Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation

Abstract

Complex antagonistic interactions between abscisic acid (ABA) and brassinosteroid (BR) signalling pathways have been widely documented. However, whether or how ABA interacts synergistically with BR in plants remains to be elucidated. Here, we report that low, but not high, concentration of ABA increases lamina joint inclination of rice seedling, which requires functional BR biosynthesis and signalling. Transcriptome analyses confirm that about 60% of low-concentration ABA early response genes can be regulated by BR in the same directions. ABA activates BR signal in a fast, limited and short-term manner and the BR-biosynthesis regulatory gene, OsGSR1, plays a key role during this process, whose expression is induced slightly by ABA through transcriptional factor ABI3. Moreover, the early short-term BR signal activation is also important for ABA-mediated salt stress tolerance. Intriguingly, the process and effect of short-term BR signal activation were covered by high concentration of ABA, implying adaptive mechanisms existed in plants to cope with varying degrees of stress.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Low concentration of ABA increases LJI of rice seedling.
Fig. 2: ABA regulates LJI through activating BR signalling.
Fig. 3: Synergistic response of rice seedlings to ABA and BL at the transcriptional level.
Fig. 4: OsGSR1 is required for ABA-regulated LJI in rice seedling.
Fig. 5: Transactivation of OsGSR1 by ABI3 is required for ABA-mediated LJI.
Fig. 6: ABA-mediated salt stress tolerance depends on transient accumulation of BR.
Fig. 7: A working model of complex interplay between ABA and BR signalling in rice seedlings.

Similar content being viewed by others

Data availability

Genome sequence data from this study can be found in the GenBank/EMBL libraries under the following accession numbers: Os01g0911700 (ABI3), Os01g0859300 (ABI5), Os04g0448900 (ABA1), Os01g0197100 (D2), Os04g0469800 (D11), Os06g0266800 (OsGSR1) and Os07g0569100 (OsREM4.1). O. sativa proteome sequences were downloaded from IRGSP (http://rice.plantbiology.msu.edu/). The RNA-seq data have been deposited in Sequence Read Archive of NCBI (https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?) under accession number PRJNA732471. The data supporting the findings of this study are available within the article and its supplementary data, or from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Zhao, Y. et al. The unique mode of action of a divergent member of the ABA-receptor protein family in ABA and stress signaling. Cell Res. 23, 1380–1395 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ma, Y. et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068 (2009).

    CAS  PubMed  Google Scholar 

  3. Park, S. Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Fuchs, S., Tischer, S. V., Wunschel, C., Christmann, A. & Grill, E. Abscisic acid sensor RCAR7/PYL13, specific regulator of protein phosphatase coreceptors. Proc. Natl Acad. Sci. USA 111, 5741–5746 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leung, J. et al. Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264, 1448–1452 (1994).

    Article  CAS  PubMed  Google Scholar 

  6. Fujii, H. et al. In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660–664 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nishimura, N. et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J. 61, 290–299 (2010).

    Article  CAS  PubMed  Google Scholar 

  8. Furihata, T. et al. Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proc. Natl Acad. Sci. USA 103, 1988–1993 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Santiago, J. et al. The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462, 665–668 (2009).

    Article  CAS  PubMed  Google Scholar 

  10. Parcy, F., Valon, C., Kohara, A., Misera, S. & Giraudat, J. The ABSCISIC ACID-INSENSITIVE3, FUSCA3, and LEAFY COTYLEDON1 loci act in concert to control multiple aspects of Arabidopsis seed development. Plant Cell 9, 1265–1277 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Nambara, E. et al. The role of ABI3 and FUS3 loci in Arabidopsis thaliana on phase transition from late embryo development to germination. Dev. Biol. 220, 412–423 (2000).

    Article  CAS  PubMed  Google Scholar 

  12. Finkelstein, R. R. & Lynch, T. J. The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599–609 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lopez-Molina, L., Mongrand, S., McLachlin, D. T., Chait, B. T. & Chua, N. H. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J. 32, 317–328 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Nakamura, S., Lynch, T. J. & Finkelstein, R. R. Physical interactions between ABA response loci of Arabidopsis. Plant J. 26, 627–635 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. Kinoshita, T. et al. Binding of brassinosteroids to the extracellular domain of plant receptor kinase BRI1. Nature 433, 167–171 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Wang, X. et al. Sequential transphosphorylation of the BRI1/BAK1 receptor kinase complex impacts early events in brassinosteroid signaling. Dev. Cell 15, 220–235 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Russinova, E. et al. Heterodimerization and endocytosis of Arabidopsis brassinosteroid receptors BRI1 and AtSERK3 (BAK1). Plant Cell 16, 3216–3229 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang, W. et al. BSKs mediate signal transduction from the receptor kinase BRI1 in Arabidopsis. Science 321, 557–560 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kim, T. W. et al. Brassinosteroid signal transduction from cell-surface receptor kinases to nuclear transcription factors. Nat. Cell Biol. 11, 1254–1260 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Li, J. & Nam, K. H. Regulation of brassinosteroid signaling by a GSK3/SHAGGY-like kinase. Science 295, 1299–1301 (2002).

    CAS  PubMed  Google Scholar 

  21. Wang, Z. Y. et al. Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell 2, 505–513 (2002).

    Article  CAS  PubMed  Google Scholar 

  22. Yin, Y. et al. A new class of transcription factors mediates brassinosteroid-regulated gene expression in Arabidopsis. Cell 120, 249–259 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. He, J. X. et al. BZR1 is a transcriptional repressor with dual roles in brassinosteroid homeostasis and growth responses. Science 307, 1634–1638 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steber, C. M. & McCourt, P. A role for brassinosteroids in germination in Arabidopsis. Plant Physiol. 125, 763–769 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhang, S., Cai, Z. & Wang, X. The primary signaling outputs of brassinosteroids are regulated by abscisic acid signaling. Proc. Natl Acad. Sci. USA 106, 4543–4548 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nemhauser, J. L., Hong, F. X. & Chory, J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467–475 (2006).

    Article  CAS  PubMed  Google Scholar 

  27. Northey, J. G. et al. Farnesylation mediates brassinosteroid biosynthesis to regulate abscisic acid responses. Nat. Plants 2, 16114 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. Cai, Z. et al. GSK3-like kinases positively modulate abscisic acid signaling through phosphorylating subgroup III SnRK2s in Arabidopsis. Proc. Natl Acad. Sci. USA 111, 9651–9656 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu, Y. & Yu, D. BRASSINOSTEROID INSENSITIVE2 interacts with ABSCISIC ACID INSENSITIVE5 to mediate the antagonism of brassinosteroids to abscisic acid during seed germination in Arabidopsis. Plant Cell 26, 4394–4408 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao, X., Dou, L., Gong, Z., Wang, X. & Mao, T. BES1 hinders ABSCISIC ACID INSENSITIVE5 and promotes seed germination in Arabidopsis. New Phytol. 221, 908–918 (2018).

    Article  PubMed  CAS  Google Scholar 

  31. Ryu, H., Cho, H., Bae, W. & Hwang, I. Control of early seedling development by BES1/TPL/HDA19-mediated epigenetic regulation of ABI3. Nat. Commun. 5, 4138 (2014).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, H. et al. Abscisic acid signaling inhibits brassinosteroid signaling through dampening the dephosphorylation of BIN2 by ABI1 and ABI2. Mol. Plant 11, 315–325 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Gui, J. et al. OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice. Dev. Cell 38, 201–213 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Zhou, J. et al. H2O2 mediates the crosstalk of brassinosteroid and abscisic acid in tomato responses to heat and oxidative stresses. J. Exp. Bot. 65, 4371–4383 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang, A. et al. Nitric oxide mediates brassinosteroid-induced ABA biosynthesis involved in oxidative stress tolerance in maize leaves. Plant Cell Physiol. 52, 181–192 (2011).

    Article  CAS  PubMed  Google Scholar 

  36. Tong, H. & Chu, C. Functional specificities of brassinosteroid and potential utilization for crop improvement. Trends Plant Sci. 23, 1016–1028 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Kim, H. et al. A rice orthologue of the ABA receptor, OsPYL/RCAR5, is a positive regulator of the ABA signal transduction pathway in seed germination and early seedling growth. J. Exp. Bot. 63, 1013–1024 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Wang, L. et al. OsGSR1 is involved in crosstalk between gibberellins and brassinosteroids in rice. Plant J. 57, 498–510 (2009).

    Article  CAS  PubMed  Google Scholar 

  39. Shimada, A. et al. The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J. 48, 390–402 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Tong, H. et al. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice. Plant Cell 26, 4376–4393 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, S. N. et al. The auxin response factor, OsARF19, controls rice leaf angles through positively regulating OsGH3-5 and OsBRI1. Plant Cell Environ. 38, 638–654 (2015).

    Article  PubMed  CAS  Google Scholar 

  42. Song, Y., You, J. & Xiong, L. Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol. Biol. 70, 297–309 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Gan, L. et al. Methyl jasmonate inhibits lamina joint inclination by repressing brassinosteroid biosynthesis and signaling in rice. Plant Sci. 241, 238–245 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. Cao, H. P. & Chen, S. K. Brassinosteroid-induced rice lamina joint inclination and its relation to indole-3-acetic-acid and ethylene. Plant Growth Regul. 16, 189–196 (1995).

    Article  CAS  Google Scholar 

  45. Zhao, S. Q., Xiang, J. J. & Xue, H. W. Studies on the rice LEAF INCLINATION1 (LC1), an IAA-amido synthetase, reveal the effects of auxin in leaf inclination control. Mol. Plant 6, 174–187 (2013).

    Article  CAS  PubMed  Google Scholar 

  46. Bai, M. Y. et al. Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc. Natl Acad. Sci. USA 104, 13839–13844 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yamamuro, C. et al. Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12, 1591–1606 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tong, H. N. et al. DWARF AND LOW-TILLERING acts as a direct downstream target of a GSK3/SHAGGY-like kinase to mediate brassinosteroid responses in rice. Plant Cell 24, 2562–2577 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hong, Z. et al. A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15, 2900–2910 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Tanabe, S. et al. A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17, 776–790 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Saika, H. et al. Ethylene promotes submergence-induced expression of OsABA8ox1, a gene that encodes ABA 8′-hydroxylase in rice. Plant Cell Physiol. 48, 287–298 (2007).

    Article  CAS  PubMed  Google Scholar 

  52. Zhu, G. H., Ye, N. H. & Zhang, J. H. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant Cell Physiol. 50, 644–651 (2009).

    Article  CAS  PubMed  Google Scholar 

  53. Li, C. X., Shen, H. Y., Wang, T. & Wang, X. L. ABA regulates subcellular redistribution of OsABI-LIKE2, a negative regulator in ABA signaling, to control root architecture and drought resistance in Oryza sativa. Plant Cell Physiol. 56, 2396–2408 (2015).

    Article  CAS  PubMed  Google Scholar 

  54. Xiang, Y., Tang, N., Du, H., Ye, H. Y. & Xiong, L. Z. Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol. 148, 1938–1952 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liu, J. M. et al. Loose Plant Architecture1 (LPA1) determines lamina joint bending by suppressing auxin signalling that interacts with C-22-hydroxylated and 6-deoxo brassinosteroids in rice. J. Exp. Bot. 67, 1883–1895 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang, G. et al. A small G protein as a novel component of the rice brassinosteroid signal transduction. Mol. Plant 9, 1260–1271 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Xiao, Y. H., Liu, D. P., Zhang, G. X., Tong, H. N. & Chu, C. C. Brassinosteroids regulate OFP1, a DLT interacting protein, to modulate plant architecture and grain morphology in rice. Front. Plant Sci. 8, 1698 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ruan, W. Y. et al. An SPX-RLI1 module regulates leaf inclination in response to phosphate availability in rice. Plant Cell 30, 853–870 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aya, K. et al. A novel AP2-type transcription factor, SMALL ORGAN SIZE1, controls organ size downstream of an auxin signaling pathway. Plant Cell Physiol. 55, 897–912 (2014).

    Article  CAS  PubMed  Google Scholar 

  60. Chen, Q. L. et al. Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice. J. Exp. Bot. 66, 6047–6058 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Agrawal, G. K. et al. Screening of the rice viviparous mutants generated by endogenous retrotransposon Tos17 insertion. Tagging of a zeaxanthin epoxidase gene and a novel ostatc gene. Plant Physiol. 125, 1248–1257 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kim, T.-W. et al. OST1 activation by the brassinosteroid-regulated kinase CDG1-LIKE1 in stomatal closure. Plant Cell 30, 1848–1863 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Kim, T.-W. et al. RETRACTION: OST1 activation by the brassinosteroid-regulated kinase CDG1-LIKE1 in stomatal closure. Plant Cell 32, 286 (2019).

    Google Scholar 

  64. Li, Q. F. et al. Abscisic acid represses rice lamina joint inclination by antagonizing brassinosteroid biosynthesis and signaling. Int. J. Mol. Sci. 20, 4908 (2019).

    Article  CAS  PubMed Central  Google Scholar 

  65. Tang, J. et al. Mutation of a nucleotide-binding leucine-rich repeat immune receptor-type protein disrupts immunity to bacterial blight. Plant Physiol. 181, 1295–1313 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Li, J. et al. Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light. Nat. Commun. 11, 1592 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    Article  CAS  PubMed  Google Scholar 

  70. Tang, Q. Y. & Zhang, C. X. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci. 20, 254–260 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Fang, H. Tong and Y. Xiao for providing the seeds of ABA and BR-related mutants. We also thank G. Li for performing field cultivation and S. Cao for performing rice transformation. This work was supported by the National Natural Science Foundation of China (grant nos. 31771360 and 32070547).

Author information

Authors and Affiliations

Authors

Contributions

J.T. and C.C. conceived the project, designed the experiments and analysed the data. Q.L. and J.T. performed most of the experiments with the help of F.X., Z.C., K.S., Y.L., Z.T, J.Y., G.Z., X.L., X.H., L.D., Y.Q. and Y.W. J.T. wrote the manuscript. C.C. and Q.L. revised the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Chengcai Chu or Jiuyou Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Qiaoquan Liu, Brigitte Poppenberger and Hojin Ryu for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10.

Reporting Summary

Supplementary Table 1

The genes regulated by ABA or BL at each time point (log2 ≥ 0.5 or ≤ –0.5 and Padj ≤ 0.05). A, ABA treatment; B, BL treatement. 0.5, 1, 2 and 4 indicate 0.5, 1, 2 and 4 hours after ABA or BL treatments, respectively.

Supplementary Table 2

Genome-wide transcription profiles of gsr1-1, abi3 and dlt. log2 ≥ 0.5 or ≤ −0.5 and Padj ≤ 0.01.

Supplementary Table 3

Primer pairs used in this study.

Source data

Source Data Fig. 2

Original western blots.

Source Data Fig. 5

Original EMSA PAGE.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Xu, F., Chen, Z. et al. Synergistic interplay of ABA and BR signal in regulating plant growth and adaptation. Nat. Plants 7, 1108–1118 (2021). https://doi.org/10.1038/s41477-021-00959-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00959-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing