Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

What shoots can teach about theories of plant form

Abstract

Plants generate a large variety of shoot forms with regular geometries. These forms emerge primarily from the activity of a stem cell niche at the shoot tip. Recent efforts have established a theoretical framework of form emergence at the shoot tip, which has empowered the use of modelling in conjunction with biological approaches to begin to disentangle the biochemical and physical mechanisms controlling form development at the shoot tip. Here, we discuss how these advances get us closer to identifying the construction principles of plant shoot tips. Considering the current limits of our knowledge, we propose a roadmap for developing a general theory of form development at the shoot tip.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Morphology and functional organization of the SAM.
Fig. 2: Principles of dynamical form emergence at the SAM.
Fig. 3: Inhibitory field-based model of phyllotactic patterning at the shoot apex.
Fig. 4: Theoretical multiscale view of form emergence at the shoot apex.
Fig. 5: Molecular mechanisms of patterning at the SAM.
Fig. 6: Molecular processes acting in tissue deformation during primordium initiation.

Similar content being viewed by others

References

  1. Turing, A. M. The chemical basis of morphogenesis. Proc. R. Soc. Lond. B 237, 37–72 (1952).

    Google Scholar 

  2. Jaeger, J., Irons, D. & Monk, N. Regulative feedback in pattern formation: towards a general relativistic theory of positional information. Development 135, 3175–3183 (2008).

    Article  CAS  PubMed  Google Scholar 

  3. Adler, I., Barabe, D. & Jean, R. V. A history of the study of phyllotaxis. Ann. Bot. 80, 231–244 (1997).

    Article  Google Scholar 

  4. Douady, S. & Couder, Y. Phyllotaxis as a dynamical self-organizing process. 2. The spontaneous formation of a periodicity and the coexistence of spiral and whorled patterns. J. Theor. Biol. 178, 275–294 (1996).

    Article  Google Scholar 

  5. Refahi, Y. et al. A stochastic multicellular model identifies biological watermarks from disorders in self-organized patterns of phyllotaxis. eLife 5, e14093 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Godin, C., Golé, C. & Douady, S. Phyllotaxis as geometric canalization during plant development. Development 147, dev165878 (2020).

    Article  CAS  PubMed  Google Scholar 

  7. Sachs, J. A Text-Book of Botany: Morphological and Physiological (Clarendon Press, 1875).

    Book  Google Scholar 

  8. Kutschera, U. in The Cytoskeletal Basis of Plant Growth and Form (ed. Lloyd, C. W.) 85–99 (Academic Press, 1991).

  9. Lockhart, J. A. An analysis of irreversible plant cell elongation. J. Theor. Biol. 8, 264–275 (1965).

    Article  CAS  PubMed  Google Scholar 

  10. Ray, P. M., Green, P. B. & Cleland, R. Role of turgor in plant cell growth. Nature 239, 163–164 (1972).

    Article  Google Scholar 

  11. Dupuy, L., Mackenzie, J., Rudge, T. & Haseloff, J. A system for modelling cell-cell interactions during plant morphogenesis. Ann. Bot. 101, 1255–1265 (2008).

    Article  PubMed  Google Scholar 

  12. Hamant, O. et al. Developmental patterning by mechanical signals in Arabidopsis. Science 322, 1650–1655 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Boudon, F. et al. A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution. PLoS Comput. Biol. 11, e1003950 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bozorg, B., Krupinski, P. & Jönsson, H. A continuous growth model for plant tissue. Phys. Biol. 13, 065002 (2016).

    Article  PubMed  Google Scholar 

  15. Erickson, R. O. Modeling of plant growth. Annu. Rev. Plant Physiol. 27, 407–434 (1976).

    Article  Google Scholar 

  16. Silk, W. K. Quantitative descriptions of development. Annu. Rev. Plant Physiol. 35, 479–518 (1984).

    Article  Google Scholar 

  17. Coen, E., Rolland-Lagan, A.-G., Matthews, M., Bangham, J. A. & Prusinkiewicz, P. The genetics of geometry. Proc. Natl Acad. Sci. USA 101, 4728–4735 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. Abley, K. et al. An intracellular partitioning-based framework for tissue cell polarity in plants and animals. Development 140, 2061–2074 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Bassel, G. W. et al. Mechanical constraints imposed by 3D cellular geometry and arrangement modulate growth patterns in the Arabidopsis embryo. Proc. Natl Acad. Sci. USA 111, 8685–8690 (2014).

    Article  CAS  PubMed  Google Scholar 

  20. Bozorg, B., Krupinski, P. & Jönsson, H. Stress and strain provide positional and directional cues in development. PLoS Comput. Biol. 10, e1003410 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Oliveri, H., Traas, J., Godin, C. & Ali, O. Regulation of plant cell wall stiffness by mechanical stress: a mesoscale physical model. J. Math. Biol. 78, 625–653 (2019).

    Article  PubMed  Google Scholar 

  22. Gaillochet, C., Daum, G. & Lohmann, J. U. O cell, where art thou? The mechanisms of shoot meristem patterning. Curr. Opin. Plant Biol. 23, 91–97 (2015).

    Article  PubMed  Google Scholar 

  23. Jönsson, H. et al. Modeling the organization of the WUSCHEL expression domain in the shoot apical meristem. Bioinformatics 21, i232–i240 (2005).

    Article  PubMed  Google Scholar 

  24. Hohm, T., Zitzler, E. & Simon, R. A dynamic model for stem cell homeostasis and patterning in Arabidopsis meristems. PLoS ONE 5, e9189 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Yadav, R. K. et al. Plant stem cell maintenance involves direct transcriptional repression of differentiation program. Mol. Syst. Biol. 9, 654 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gruel, J. et al. An epidermis-driven mechanism positions and scales stem cell niches in plants. Sci. Adv. 2, e1500989 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Adibi, M., Yoshida, S., Weijers, D. & Fleck, C. Centering the organizing center in the Arabidopsis thaliana shoot apical meristem by a combination of cytokinin signaling and self-organization. PLoS ONE 11, e0147830 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zhou, Y. et al. HAIRY MERISTEM with WUSCHEL confines CLAVATA3 expression to the outer apical meristem layers. Science 361, 502–506 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gruel, J., Deichmann, J., Landrein, B., Hitchcock, T. & Jönsson, H. The interaction of transcription factors controls the spatial layout of plant aerial stem cell niches. npj Syst. Biol. Appl. 4, 36 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Knauer, S. et al. A protodermal miR394 signal defines a region of stem cell competence in the Arabidopsis shoot meristem. Dev. Cell 24, 125–132 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Benkova, E., Ivanchenko, M. G., Friml, J., Shishkova, S. & Dubrovsky, J. G. A morphogenetic trigger: is there an emerging concept in plant developmental biology? Trends Plant Sci. 14, 189–193 (2009).

    Article  CAS  PubMed  Google Scholar 

  32. Paque, S. & Weijers, D. Auxin: the plant molecule that influences almost anything. BMC Biol. 14, 675 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Vernoux, T. et al. The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol. Syst. Biol. 7, 508–508 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  34. de Reuille, P. B. et al. Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proc. Natl Acad. Sci. USA 103, 1627–1632 (2006).

    Article  PubMed  Google Scholar 

  35. Galvan-Ampudia, C. S. et al. Temporal integration of auxin information for the regulation of patterning. eLife 9, e55832 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Reinhardt, D., Mandel, T. & Kuhlemeier, C. Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12, 507–518 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao, Z. et al. Hormonal control of the shoot stem-cell niche. Nature 465, 1089–1092 (2010).

    Article  CAS  PubMed  Google Scholar 

  38. Ma, Y. et al. WUSCHEL acts as an auxin response rheostat to maintain apical stem cells in Arabidopsis. Nat. Commun. 10, 5093 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Truskina, J. et al. A network of transcriptional repressors modulates auxin responses. Nature 589, 116–119 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Vernoux, T., Kronenberger, J., Grandjean, O., Laufs, P. & Traas, J. PIN-FORMED 1 regulates cell fate at the periphery of the shoot apical meristem. Development 127, 5157–5165 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. Reinhardt, D. et al. Regulation of phyllotaxis by polar auxin transport. Nature 426, 255–260 (2003).

    Article  CAS  PubMed  Google Scholar 

  42. Heisler, M. G. et al. Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr. Biol. 15, 1899–1911 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Bainbridge, K. et al. Auxin influx carriers stabilize phyllotactic patterning. Genes Dev. 22, 810–823 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jönsson, H., Heisler, M. G., Shapiro, B. E., Meyerowitz, E. M. & Mjolsness, E. An auxin-driven polarized transport model for phyllotaxis. Proc. Natl Acad. Sci. USA 103, 1633–1638 (2006).

    Article  PubMed  Google Scholar 

  45. Smith, R. S. et al. A plausible model of phyllotaxis. Proc. Natl Acad. Sci. USA 103, 1301–1306 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Stoma, S. et al. Flux-based transport enhancement as a plausible unifying mechanism for auxin transport in meristem development. PLoS Comput. Biol. 4, e1000207 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Bayer, E. M. et al. Integration of transport-based models for phyllotaxis and midvein formation. Genes Dev. 23, 373–384 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van Berkel, K., de Boer, R. J., Scheres, B. & Tusscher ten, K. Polar auxin transport: models and mechanisms. Development 140, 2253–2268 (2013).

    Article  PubMed  Google Scholar 

  49. O’Connor, D. L. et al. A division in PIN-mediated auxin patterning during organ initiation in grasses. PLoS Comput. Biol. 10, e1003447 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hartmann, F. P., Barbier de Reuille, P. & Kuhlemeier, C. Toward a 3D model of phyllotaxis based on a biochemically plausible auxin-transport mechanism. PLoS Comput. Biol. 15, e1006896 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Brunoud, G. et al. A novel sensor to map auxin response and distribution at high spatio-temporal resolution. Nature 482, 103–106 (2012).

    Article  CAS  PubMed  Google Scholar 

  52. Abley, K., Sauret-Güeto, S., Marée, A. F. & Coen, E. Formation of polarity convergences underlying shoot outgrowths. eLife 5, e18165 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Caggiano, M. P. et al. Cell type boundaries organize plant development. eLife 6, e27421 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  54. Besnard, F. et al. Cytokinin signalling inhibitory fields provide robustness to phyllotaxis. Nature 505, 417–421 (2014).

    Article  CAS  PubMed  Google Scholar 

  55. Shi, B. et al. Feedback from lateral organs controls shoot apical meristem growth by modulating auxin transport. Dev. Cell 44, 204–216 (2018).

    Article  CAS  PubMed  Google Scholar 

  56. Baskin, T. I. Anisotropic expansion of the plant cell wall. Annu. Rev. Cell Dev. Biol. 21, 203–222 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Corson, F. et al. Turning a plant tissue into a living cell froth through isotropic growth. Proc. Natl Acad. Sci. USA 106, 8453–8458 (2009).

    Article  CAS  PubMed  Google Scholar 

  58. Landrein, B. & Hamant, O. How mechanical stress controls microtubule behavior and morphogenesis in plants: history, experiments and revisited theories. Plant J. 75, 324–338 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Sampathkumar, A. et al. Primary wall cellulose synthase regulates shoot apical meristem mechanics and growth. Development 146, dev179036 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sassi, M. et al. An auxin-mediated shift toward growth isotropy promotes organ formation at the shoot meristem in Arabidopsis. Curr. Biol. 24, 2335–2342 (2014).

    Article  CAS  PubMed  Google Scholar 

  61. Armezzani, A. et al. Transcriptional induction of cell wall remodelling genes is coupled to microtubule-driven growth isotropy at the shoot apex in Arabidopsis. Development 145, dev162255 (2018).

    Article  PubMed  Google Scholar 

  62. Fleming, A. J., McQueen-Mason, S. & Mandel, T. Induction of leaf primordia by the cell wall protein expansin. Science 276, 1415–1418 (1997).

    Article  CAS  Google Scholar 

  63. Peaucelle, A. et al. Arabidopsis phyllotaxis is controlled by the methyl-esterification status of cell-wall pectins. Curr. Biol. 18, 1943–1948 (2008).

    Article  CAS  PubMed  Google Scholar 

  64. Peaucelle, A. et al. Pectin-induced changes in cell wall mechanics underlie organ initiation in Arabidopsis. Curr. Biol. 21, 1720–1726 (2011).

    Article  CAS  PubMed  Google Scholar 

  65. Zhao, F. et al. Xyloglucans and microtubules synergistically maintain meristem geometry and phyllotaxis. Plant Phys. 181, 1191–1206 (2019).

    Article  CAS  Google Scholar 

  66. Milani, P. et al. In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J. 67, 1116–1123 (2011).

    Article  CAS  PubMed  Google Scholar 

  67. Kierzkowski, D. et al. Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335, 1096–1099 (2012).

    Article  CAS  PubMed  Google Scholar 

  68. Hamant, O., Inoue, D., Bouchez, D., Dumais, J. & Mjolsness, E. Are microtubules tension sensors? Nat. Commun. 10, 2360 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Uyttewaal, M. et al. Mechanical stress acts via Katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149, 439–451 (2012).

    Article  CAS  PubMed  Google Scholar 

  70. Heisler, M. G. et al. Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLoS Biol. 8, e1000516 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Braybrook, S. A. & Peaucelle, A. Mechano-chemical aspects of organ formation in Arabidopsis thaliana: the relationship between auxin and pectin. PLoS ONE 8, e57813 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Nakayama, N. et al. Mechanical regulation of auxin-mediated growth. Curr. Biol. 22, 1468–1476 (2012).

    Article  CAS  PubMed  Google Scholar 

  73. Landrein, B. et al. Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. eLife 4, e07811 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Mirabet, V., Besnard, F., Vernoux, T. & Boudaoud, A. Noise and robustness in phyllotaxis. PLoS Comput. Biol. 8, e1002389 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhou, L. et al. Epidermal restriction confers robustness to organ shapes. J. Integr. Plant Biol. 62, 1853–1867 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Rasmussen, C. G. & Bellinger, M. An overview of plant division-plane orientation. New Phytol. 219, 505–512 (2018).

    Article  PubMed  Google Scholar 

  77. Louveaux, M., Julien, J.-D., Mirabet, V., Boudaoud, A. & Hamant, O. Cell division plane orientation based on tensile stress in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 113, E4294–E4303 (2016).

    Article  CAS  PubMed  Google Scholar 

  78. Sahlin, P. & Jönsson, H. A modeling study on how cell division affects properties of epithelial tissues under isotropic growth. PLoS ONE 5, e11750 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Jones, A. R. et al. Cell-size dependent progression of the cell cycle creates homeostasis and flexibility of plant cell size. Nat. Commun. 8, 15060 (2017).

    Article  Google Scholar 

  80. Willis, L. et al. Cell size and growth regulation in the Arabidopsis thaliana apical stem cell niche. Proc. Natl Acad. Sci. USA 113, E8238–E8246 (2016).

    Article  CAS  PubMed  Google Scholar 

  81. Zhao, F. et al. Microtubule-mediated wall anisotropy contributes to leaf blade flattening. Curr. Biol. 30, 3972–3985 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Wyrzykowska, J., Pien, S., Shen, W.-H. & Fleming, A. J. Manipulation of leaf shape by modulation of cell division. Development 129, 957–964 (2002).

    Article  CAS  PubMed  Google Scholar 

  83. Leiboff, S. et al. Genetic control of morphometric diversity in the maize shoot apical meristem. Nat. Commun. 6, 8974 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Jackson, M. D. B. et al. Global topological order emerges through local mechanical control of cell divisions in the Arabidopsis shoot apical meristem. Cell Syst. 8, 53–65 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Long, Y. et al. Cellular heterogeneity in pressure and growth emerges from tissue topology and geometry. Curr. Biol. 30, 1504–1516 (2020).

    Article  CAS  PubMed  Google Scholar 

  86. Cheddadi, I., Génard, M., Bertin, N. & Godin, C. Coupling water fluxes with cell wall mechanics in a multicellular model of plant development. PLoS Comput. Biol. 15, e1007121 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gisel, A., Barella, S., Hempel, F. D. & Zambryski, P. C. Temporal and spatial regulation of symplastic trafficking during development in Arabidopsis thaliana apices. Development 126, 1879–1889 (1999).

    Article  CAS  PubMed  Google Scholar 

  88. Rinne, P. L. & van der Schoot, C. Symplasmic fields in the tunica of the shoot apical meristem coordinate morphogenetic events. Development 125, 1477–1485 (1998).

    Article  CAS  PubMed  Google Scholar 

  89. Oparka, K. J. & Prior, D. A. M. Direct evidence for pressure-generated closure of plasmodesmata. Plant J. 2, 741–750 (1992).

    Article  Google Scholar 

  90. Schulz, A. Plasmodesmal widening accompanies the short-term increase in symplasmic phloem unloading in pea root tips under osmotic stress. Protoplasma 188, 22–37 (1995).

    Article  Google Scholar 

  91. Park, K., Knoblauch, J., Oparka, K. & Jensen, K. H. Controlling intercellular flow through mechanosensitive plasmodesmata nanopores. Nat. Commun. 10, 3564 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hernández-Hernández, V., Benítez, M. & Boudaoud, A. Interplay between turgor pressure and plasmodesmata during plant development. J. Exp. Bot. 3, 763–10 (2019).

    Google Scholar 

  93. Haas, K. T., Wightman, R., Meyerowitz, E. M. & Peaucelle, A. Pectin homogalacturonan nanofilament expansion drives morphogenesis in plant epidermal cells. Science 367, 1003–1007 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Cosgrove, D. J. & Anderson, C. T. Plant cell growth: do pectins drive lobe formation in Arabidopsis pavement cells? Curr. Biol. 30, R660–R662 (2020).

    Article  CAS  PubMed  Google Scholar 

  95. Alber, M., Godin, C., Maini, P. K., Merks, R. & Mjolsness, E. Introduction. Bull. Math. Biol. 81, 3214–3218 (2019).

    Article  PubMed  Google Scholar 

  96. Prusinkiewicz, P. & Lindenmayer, A. The Algorithmic Beauty of Plants (Springer Verlag, 1990).

    Book  Google Scholar 

  97. Boudon, F., Pradal, C., Cokelaer, T., Prusinkiewicz, P. & Godin, C. L-py: an L-system simulation framework for modeling plant architecture development based on a dynamic language. Front. Plant Sci. 3, 76 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  98. Hemmerling, R., Kniemeyer, O., Lanwert, D., Kurth, W. & Buck-Sorlin, G. The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition. Funct. Plant Biol. 35, 739–750 (2008).

    Article  PubMed  Google Scholar 

  99. Prusinkiewicz, P., Cieslak, M., Ferraro, P. & Hanan, J. Modeling plant development with L-systems. Math. Model. Plant Biol. 144, 139–169 (2018). Springer.

    Article  Google Scholar 

  100. Walia, A., Waadt, R. & Jones, A. M. Genetically encoded biosensors in plants: pathways to discovery. Annu. Rev. Plant Biol. 69, 497–524 (2018).

    Article  CAS  PubMed  Google Scholar 

  101. Roca-Cusachs, P., Conte, V. & Trepat, X. Quantifying forces in cell biology. Nature 19, 742–751 (2017).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank G. Ingram, O. Hamant, Y. Jaillais and Y. Coudert for comments on the manuscript; our colleagues at the Laboratoire Reproduction et Développement des Plantes for fruitful discussions; and C. S. Galvan-Ampudia for providing the confocal microscope images for the figures. This work was supported by the European Union’s Horizon 2020 Robotic for Microfarms project (ROMI; grant agreement no. 773875) to T.V., F.B and C.G. and ANR-18-CE12-0014-02 (ChromAuxi) to T.V.

Author information

Authors and Affiliations

Authors

Contributions

T.V, F.B and C.G designed the figures and wrote the manuscript. F.B. constructed the figures.

Corresponding author

Correspondence to Teva Vernoux.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Alexis Peaucelle, Yuling Jiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vernoux, T., Besnard, F. & Godin, C. What shoots can teach about theories of plant form. Nat. Plants 7, 716–724 (2021). https://doi.org/10.1038/s41477-021-00930-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-021-00930-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing