Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Arabica-like flavour in a heat-tolerant wild coffee species

Abstract

There are numerous factors to consider when developing climate-resilient coffee crops, including the ability to tolerate altered climatic conditions, meet agronomic and value chain criteria, and satisfy consumer preferences for flavour (aroma and taste). We evaluated the sensory characteristics and key environmental requirements for the enigmatic narrow-leaved coffee (Coffea stenophylla), a wild species from Upper West Africa1. We confirm historical reports of a superior flavour1,2,3 and uniquely, and remarkably, reveal a sensory profile analogous to high-quality Arabica coffee. We demonstrate that this species grows and crops under the same range of key climatic conditions as (sensorially inferior) robusta and Liberica coffee4,5,6,7,8,9 and at a mean annual temperature 6.2–6.8 °C higher than Arabica coffee, even under equivalent rainfall conditions. This species substantially broadens the climate envelope for high-quality coffee and could provide an important resource for the development of climate-resilient coffee crop plants.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Distribution map of wild locations for Arabica (C. arabica), robusta (C. canephora), Liberica (C. liberica) and stenophylla (C. stenophylla) coffee.
Fig. 2: Scatter and density plots of modelled annual mean temperature versus total mean annual precipitation.
Fig. 3: Radar graph for sensory (flavour) profile using a light roast, for stenophylla, Arabica and robusta coffee.
Fig. 4: Yes/no responses to four questions asked, in addition to the CIRAD sensory protocol.

Data availability

All data are available in the manuscript, in the Supplementary Information or from published sources.

References

  1. 1.

    Davis, A. P., Gargiula, R., Fay, M. F., Sarmu, D. & Haggar, J. Lost and found: Coffea stenophylla and C. affinis, the forgotten coffee crop species of West Africa. Front. Plant Sci. 11, 616 (2020).

  2. 2.

    Scott Elliot, G. F. Economic plants of Sierra Leone. Bull. Misc. Inform. Kew 79, 167–169 (1893).

    Google Scholar 

  3. 3.

    Don, G. General System of Gardening and Botany Vol. 3; 581 (Gilbert and Rivington Printers, 1834).

  4. 4.

    Moat, J. et al. Resilience potential of the Ethiopian coffee sector under climate change. Nat. Plants 3, 17081 (2017).

    Article  Google Scholar 

  5. 5.

    Davis, A. P. et al. Coffee Atlas of Ethiopia (Kew Publishing, 2018).

  6. 6.

    Alègre, C. Climates et caféiers d´Arabie. Agron. Trop. 14, 23–58 (1959).

    Google Scholar 

  7. 7.

    Moat, J., Gole, T. W. & Davis, A. P. Least concern to endangered: applying climate change projections profoundly influences the extinction risk assessment for wild Arabica coffee. Glob. Change Biol. 25, 390–403 (2019).

    Article  Google Scholar 

  8. 8.

    DaMatta, F. M. & Ramalho, J. D. C. Impacts of drought and temperature stress on coffee physiology and production: a review. Braz. J. Plant Physiol. 18, 55–81 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    Kath, J. et al. Not so robust: robusta coffee production is highly sensitive to temperature. Glob. Change Biol. 26, 3677–3688 (2020).

    Article  Google Scholar 

  10. 10.

    Trade Statistics (accessed 7 October 2020, International Coffee Organization); http://www.ico.org/trade_statistics.asp

  11. 11.

    Vega, F. E., Rosenquist, E. & Collins, W. Global project needed to tackle coffee crisis. Nature 425, 343 (2003).

    CAS  Article  Google Scholar 

  12. 12.

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).

  13. 13.

    Georget, F. et al. Starmaya: the first Arabica F1 coffee hybrid produced using genetic male sterility. Front. Plant Sci. 10, 1344 https://doi.org/10.3389/fpls.2019.01344 (2019)

  14. 14.

    Andrade, A. C. in Achieving Sustainable Cultivation of Coffee: Breeding and Quality Traits (ed. Lashermes, P.) (Burleigh Dodds Science Publishing, 2018).

  15. 15.

    Davis, A. P. et al. High extinction risk for wild coffee species and implications for coffee sector sustainability. Sci. Adv. 5, eaav3473 (2019).

    Article  Google Scholar 

  16. 16.

    Davis, A. P., Gole, T. W., Baena, S. & Moat, J. The impact of climate change on natural populations of Arabica coffee: predicting future trends and identifying priorities. PLoS ONE 7, e47981 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Davis, A. P., Govaerts, R., Bridson, D. M. & Stoffelen, P. An annotated taxonomic conspectus of the genus Coffea (Rubiaceae). Bot. J. Linn. Soc. 152, 465–512 (2006).

    Article  Google Scholar 

  18. 18.

    Cheney, R. H. A Monograph of the Economic Species of the Genus Coffea L. (The New York Univ. Press, 1925).

  19. 19.

    Cramer, P. J. S. Gevens over de variabiliteit van de in Nederlandsch-Indië verbouwde koffie-sorten. Meded. uitgaande Dep. Landbouw 1, 1–696 (1913).

    Google Scholar 

  20. 20.

    Tothill, J. D. Agriculture in Uganda (Oxford Univ. Press, 1940).

  21. 21.

    Spencer, M., Sage, E., Velez, M. & Guinard, J.-X. Using single free sorting and multivariate exploratory methods to design a new coffee taster’s flavor wheel. J. Food Sci. 81, S2997–S3005 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Hamon, P. et al. Genotyping-by-sequencing provides the first well-resolved phylogeny for coffee (Coffea) and insights into the evolution of caffeine content in its species. Mol. Phylogenet. Evol. 109, 351–361 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Maurin, O. et al. Towards a phylogeny for Coffea (Rubiaceae): identifying well-supported lineages based on nuclear and plastid DNA sequences. Ann. Bot. 100, 1565–1583 (2007).

    CAS  Article  Google Scholar 

  24. 24.

    Clifford, M. N., Williams, T. & Bridson, D. M. Chlorogenic acids and caffeine as possible taxonomic criteria in Coffea and Psilanthus. Phytochemistry 28, 829–838 (1989).

    CAS  Article  Google Scholar 

  25. 25.

    de Roos, B. et al. Levels of cafestol, kahweol, and related diterpenoids in wild species of the coffee plant Coffea. J. Agric. Food Chem. 45, 3065–3069 (1997).

    Article  Google Scholar 

  26. 26.

    Campa, C. et al. Trigonelline and sucrose diversity in wild Coffea species. Food Chem. 88, 39–43 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    Anthony, F., Noirot, M. & Clifford, M. N. Biochemical diversity in the genus Coffea L.: chlorogenic acids, caffeine, and mozambioside contents. Genet. Resour. Crop Evol. 40, 61–70 (1993).

    Article  Google Scholar 

  28. 28.

    Portères, R. Etude sur les caféiers spontanés de la section ‘Des Eucoffeae’. Leur répartition, leur habitat, leure mise en culture et leur sélection en Cote d’Ivoire. Première partie: répartition et habitat. Ann. Agric. Afr. Occid. 1, 68–91 (1937).

    Google Scholar 

  29. 29.

    Grisi, F. A. et al. Leaf anatomical evaluations in ‘Catuaí’ and ‘Siriema’ coffee seedlings submitted to water stress. Ciênc. Agrotec. 32, 1730–1736 (2008).

    Article  Google Scholar 

  30. 30.

    Wellman, F. L. Coffee: Botany, Cultivation and Utilization 53 (Leonard Hill/Interscience, 1961).

  31. 31.

    Cramer, P. J. S. A Review of Literature of Coffee Research in Indonesia 136 (Turrialba: SIC Editorial, Inter-American Institute of Agricultural Sciences, 1957).

  32. 32.

    Berthaud, J. Liste du Matériel Provenant des Prospections de Côte d’Ivoire (ORSTOM, 1983).

  33. 33.

    Berthaud, J. Les Ressources Genetiques pour l’Amelioration des Cafeiers Africains Diploïdes (ORSTOM, 1986).

  34. 34.

    Le Pierrès, D. et al. Les caféiers sauvages de Côte d'Ivoire et de Guinée: bilan des missions de prospection effectuées de 1984 à 1987. In Treizième Colloque Scientifique International sur le Café 420–428 (ASIC, 1989).

  35. 35.

    Louran, J. La Fertilite des Hybrides Interspecifiques et Les Relations Genomiques Entre Cafeiers Diploides d’Origine Africaine (genre Coffea l. Sous-genre Coffea). PhD thesis, Universite de Paris Sud (1992).

  36. 36.

    Carvalho, A. & Monaco, L. C. Relaciones geneticas de especies seleccionadas de Coffea. Cafe 9, 3–19 (1968).

    Google Scholar 

  37. 37.

    ArcGIS Pro 2.6.1 (ESRI, 2020).

  38. 38.

    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2016).

  39. 39.

    Busby, J. R. in Nature Conservation: Cost Effective Biological Surveys and Data Analysis (eds Margules, C. R. & Austin, M. P.) 64–68 (CSIRO, 1991).

  40. 40.

    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).

    Article  Google Scholar 

  41. 41.

    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).

  42. 42.

    Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots. R package version 0.4.0 https://CRAN.R-project.org/package=ggpubr (2020).

Download references

Acknowledgements

We thank the Department for Forestry, Ministry of Agriculture and the Sierra Leone Agricultural Research Institute in Sierra Leone and Welthungerhilfe staff at their offices in Freetown and Kenema; in particular, F. Moestl, M. Bischofberger and D. Wambulwa Makokha. We thank the BRC Coffea collection, maintained by the Institut de Recherche pour le Développement (IRD) and CIRAD in Reunion Island, for providing plant material of stenophylla. We thank the Sensory Analysis Laboratory UMR, Qualisud, CIRAD, Montpellier, France for providing access to the laboratory and protocols. We thank the sensory panel judges from the following companies/organizations: L’Arbre à Café, AST Sensory Skills, Belco, CIRAD, La Claque Café (France), Nespresso (Switzerland), Supremo (Belgium) and Union Hand-Roasted Coffee (United Kingdom). Sensory panel members are given in Supplementary Table 5. Funding for the Sierra Leone and United Kingdom part of this research was through a Darwin Initiative Scoping Project DARSC196.

Author information

Affiliations

Authors

Contributions

A.P.D., D.M., J.M., J.H. and D.S. designed the experiments. A.P.D., D.M., J.M. and D.S. provided the data. A.P.D., D.M. and J.M. analysed the data. A.P.D., J.H. and J.M. wrote the first draft and D.M. and D.S. provided additional text and editing.

Corresponding author

Correspondence to Aaron P. Davis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Benoit Bertrand, Jean-Xavier Guinard and Jarod Kath for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, results and Figs. 1 and 2.

Reporting Summary

Supplementary Tables 1–6

Six tables in a single Excel file, with each table in a separate worksheet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davis, A.P., Mieulet, D., Moat, J. et al. Arabica-like flavour in a heat-tolerant wild coffee species. Nat. Plants 7, 413–418 (2021). https://doi.org/10.1038/s41477-021-00891-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing