Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A transposon surveillance mechanism that safeguards plant male fertility during stress



Although plants are able to withstand a range of environmental conditions, spikes in ambient temperature can impact plant fertility causing reductions in seed yield and notable economic losses1,2. Therefore, understanding the precise molecular mechanisms that underpin plant fertility under environmental constraints is critical to safeguarding future food production3. Here, we identified two Argonaute-like proteins whose activities are required to sustain male fertility in maize plants under high temperatures. We found that MALE-ASSOCIATED ARGONAUTE-1 and -2 associate with temperature-induced phased secondary small RNAs in pre-meiotic anthers and are essential to controlling the activity of retrotransposons in male meiocyte initials. Biochemical and structural analyses revealed how male-associated Argonaute activity and its interaction with retrotransposon RNA targets is modulated through the dynamic phosphorylation of a set of highly conserved, surface-located serine residues. Our results demonstrate that an Argonaute-dependent, RNA-guided surveillance mechanism is critical in plants to sustain male fertility under environmentally constrained conditions, by controlling the mutagenic activity of transposons in male germ cells.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: MAGO and pre-meiotic sRNAs are essential for male fertility in maize.
Fig. 2: MAGO1/2 are necessary to silence stress-activated retrotransposons in maize male germ cells.
Fig. 3: MAGO activity is modulated by dynamic changes in phosphorylation induced by heat stress.

Data availability

Sequence data (messenger RNA-seq, nanoPARE-seq, sRNA-seq and LTR-seq) that support the findings of this study have been deposited at the European Nucleotide Archive under accession code ERP118841. Mass spectrometry proteomics data have been deposited at the ProteomeXchange Consortium with the dataset identifier PXD013891.


  1. 1.

    Challinor, A. J. et al. A meta-analysis of crop yield under climate change and adaptation. Nat. Clim. Change 4, 287–291 (2014).

    Google Scholar 

  2. 2.

    Peng, S. et al. Rice yields decline with higher night temperature from global warming. Proc. Natl Acad. Sci. USA 101, 9971–9975 (2004).

    CAS  PubMed  Google Scholar 

  3. 3.

    Hedhly, A., Hormaza, J. I. & Herrero, M. Global warming and sexual plant reproduction. Trends Plant Sci. 14, 30–36 (2009).

    CAS  PubMed  Google Scholar 

  4. 4.

    Lobell, D. B. & Asner, G. P. Climate and management contributions to recent trends in U.S. agricultural yields. Science 299, 1032 (2003).

    CAS  PubMed  Google Scholar 

  5. 5.

    De Storme, N. & Geelen, D. The impact of environmental stress on male reproductive development in plants: biological processes and molecular mechanisms. Plant Cell Environ. 37, 1–18 (2014).

    PubMed  Google Scholar 

  6. 6.

    Barnabas, B., Jager, K. & Feher, A. The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ. 31, 11–38 (2008).

    CAS  PubMed  Google Scholar 

  7. 7.

    Begcy, K. & Dresselhaus, T. Epigenetic responses to abiotic stresses during reproductive development in cereals. Plant Reprod. 31, 343–355 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Ding, J. et al. A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc. Natl Acad. Sci. USA 109, 2654–2659 (2012).

    CAS  PubMed  Google Scholar 

  9. 9.

    Fan, Y. et al. PMS1T, producing phased small-interfering RNAs, regulates photoperiod-sensitive male sterility in rice. Proc. Natl Acad. Sci. USA 113, 15144–15149 (2016).

    CAS  PubMed  Google Scholar 

  10. 10.

    Zhou, H. et al. Photoperiod- and thermo-sensitive genic male sterility in rice are caused by a point mutation in a novel noncoding RNA that produces a small RNA. Cell Res. 22, 649–660 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Johnson, C. et al. Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res. 19, 1429–1440 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Komiya, R. et al. Rice germline-specific Argonaute MEL1 protein binds to phasiRNAs generated from more than 700 lincRNAs. Plant J. 78, 385–397 (2014).

    CAS  PubMed  Google Scholar 

  13. 13.

    Araki, S. et al. miR2118-dependent U-rich phasiRNA production in rice anther wall development. Nat. Commun. 11, 3115 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Song, X. et al. Rice RNA-dependent RNA polymerase 6 acts in small RNA biogenesis and spikelet development. Plant J. 71, 378–389 (2012).

    CAS  PubMed  Google Scholar 

  15. 15.

    Song, X. et al. Roles of DCL4 and DCL3b in rice phased small RNA biogenesis. Plant J. 69, 462–474 (2012).

    CAS  PubMed  Google Scholar 

  16. 16.

    Xia, R. et al. 24-nt reproductive phasiRNAs are broadly present in angiosperms. Nat. Commun. 10, 627 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Das, S., Swetha, C., Pachamuthu, K., Nair, A. & Shivaprasad, P. V. Loss of function of Oryza sativa Argonaute 18 induces male sterility and reduction in phased small RNAs. Plant Reprod. 33, 59–73 (2020).

    CAS  PubMed  Google Scholar 

  18. 18.

    Nonomura, K. et al. A germ cell-specific gene of the ARGONAUTE family is essential for the progression of premeiotic mitosis and meiosis during sporogenesis in rice. Plant Cell 19, 2583–2594 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Zhai, J. et al. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc. Natl Acad. Sci. USA 112, 3146–3151 (2015).

    CAS  PubMed  Google Scholar 

  20. 20.

    Teng, C. et al. Dicer-like 5 deficiency confers temperature-sensitive male sterility in maize. Nat. Commun. 11, 2912 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Vernoud, V. et al. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J. 59, 883–894 (2009).

    CAS  PubMed  Google Scholar 

  22. 22.

    Dukowic-Schulze, S. et al. The transcriptome landscape of early maize meiosis. BMC Plant Biol. 14, 118 (2014).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Shiboleth, Y. M. et al. The conserved FRNK box in HC-Pro, a plant viral suppressor of gene silencing, is required for small RNA binding and mediates symptom development. J. Virol. 81, 13135–13148 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Lakatos, L. et al. Small RNA binding is a common strategy to suppress RNA silencing by several viral suppressors. EMBO J. 25, 2768–2780 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Lisch, D. How important are transposons for plant evolution? Nat. Rev. Genet. 14, 49–61 (2013).

    CAS  PubMed  Google Scholar 

  26. 26.

    Ye, J. et al. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. Plant J. 84, 527–544 (2015).

    CAS  PubMed  Google Scholar 

  27. 27.

    Walley, J. W. et al. Integration of omic networks in a developmental atlas of maize. Science 353, 814–818 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Sheu-Gruttadauria, J., Xiao, Y., Gebert, L. F. & MacRae, I. J. Beyond the seed: structural basis for supplementary microRNA targeting by human Argonaute2. EMBO J. 38, e101153 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Quevillon Huberdeau, M. et al. Phosphorylation of Argonaute proteins affects mRNA binding and is essential for microRNA-guided gene silencing in vivo. EMBO J. 36, 2088–2106 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Golden, R. J. et al. An Argonaute phosphorylation cycle promotes microRNA-mediated silencing. Nature 542, 197–202 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Ernst, C., Odom, D. T. & Kutter, C. The emergence of piRNAs against transposon invasion to preserve mammalian genome integrity. Nat. Commun. 8, 1411 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Naito, K. et al. Unexpected consequences of a sudden and massive transposon amplification on rice gene expression. Nature 461, 1130–1134 (2009).

    CAS  PubMed  Google Scholar 

  33. 33.

    Studer, A., Zhao, Q., Ross-Ibarra, J. & Doebley, J. Identification of a functional transposon insertion in the maize domestication gene tb1. Nat. Genet. 43, 1160–1163 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Carpentier, M. C. et al. Retrotranspositional landscape of Asian rice revealed by 3000 genomes. Nat. Commun. 10, 24 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Dooner, H. K. et al. Spontaneous mutations in maize pollen are frequent in some lines and arise mainly from retrotranspositions and deletions. Proc. Natl Acad. Sci. USA 116, 10734–10743 (2019).

    CAS  PubMed  Google Scholar 

  36. 36.

    Peng, Y. et al. Elimination of a retrotransposon for quenching genome instability in modern rice. Mol. Plant 12, 1395–1407 (2019).

    CAS  PubMed  Google Scholar 

  37. 37.

    Li, Y., Segal, G., Wang, Q. & Dooner, H. K. Gene tagging with engineered Ds elements in maize. Methods Mol. Biol. 1057, 83–99 (2013).

    CAS  PubMed  Google Scholar 

  38. 38.

    McCarty, D. R. et al. Steady-state transposon mutagenesis in inbred maize. Plant J. 44, 52–61 (2005).

    CAS  PubMed  Google Scholar 

  39. 39.

    Samalova, M., Brzobohaty, B. & Moore, I. pOp6/LhGR: a stringently regulated and highly responsive dexamethasone-inducible gene expression system for tobacco. Plant J. 41, 919–935 (2005).

    CAS  PubMed  Google Scholar 

  40. 40.

    Nakagawa, T. et al. Improved gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci. Biotechnol. Biochem. (2007).

  41. 41.

    Zhai, J. et al. Spatiotemporally dynamic, cell-type-dependent premeiotic and meiotic phasiRNAs in maize anthers. Proc. Natl Acad. Sci. USA (2015).

  42. 42.

    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. (2013).

  45. 45.

    Jin, Y., Tam, O. H., Paniagua, E. & Hammell, M. TEtranscripts: a package for including transposable elements in differential expression analysis of RNA-seq datasets. Bioinformatics (2015).

  46. 46.

    Schon, M. A., Kellner, M. J., Plotnikova, A., Hofmann, F. & Nodine, M. D. NanoPARE: parallel analysis of RNA 5′ ends from low-input RNA. Genome Res. (2018).

  47. 47.

    MARTIN, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  48. 48.

    Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Allen, E. et al. Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat. Genet. 36, 1282–1290 (2004).

    CAS  PubMed  Google Scholar 

  50. 50.

    Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods (2009).

  51. 51.

    Thingholm, T. E., Jørgensen, T. J. D., Jensen, O. N. & Larsen, M. R. Highly selective enrichment of phosphorylated peptides using titanium dioxide. Nat. Protoc. (2006).

Download references


We thank G. Grant and P. Watson for help with plant husbandry, L. M. Costa for discussions and comments on the manuscript and N. Springer and S. Anderson for help with transposon analysis. This research was supported by awards from the US National Science Foundation (nos. 1027445 to A.W.S. and 1649424 and 1754097 to B.C.M.), European Research Council (grant no. 637888 to M.D.N.) and Biotechnology and Biological Sciences Research Council (BBSRC) (nos. BB/L003023/1, BB/N005279/1, BB/N00194X/1 and BB/P02601X/1 to J.G.-M).

Author information




Y.-S.L. and R.M. cultivated plants, harvested samples and collected phenotypic data. R.P., J.G.-M. and J.R. identified transposon insertions. J.D. performed phosphoproteome analysis. R.M. and Y.-S.L. performed immunoprecipitation and sRNA-seq libraries. A.L. and J.C.L. generated constructs and transgenic lines for HC-Pro and HDZIV6 transactivation. R.P. constructed nanoPARE libraries. R.M., A.D., S.T., S.A. and M.D.N. performed bioinformatic analysis. C.d.G. performed molecular dynamics simulation and protein modelling. Y.-S.L., R.M., J.D., A.D., S.T. and C.d.G. prepared figures and tables. A.W.S., J.B., B.C.M., M.D.N., J.R. and J.G.-M. co-ordinated experiments. Y.-S.L., R.M. and J.G.-M. conceived the project. J.G.-M. wrote the manuscript with input from the rest of the authors.

Corresponding author

Correspondence to Jose Gutierrez-Marcos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and source data with supporting blots and/or gels.

Reporting Summary

Supplementary Table 1

List of differentially expressed Hphasi loci.

Supplementary Table 2

List of differentially expressed genes in pre-meiotic anthers from wild-type and MAGOKD plants.

Supplementary Table 3

List of differentially expressed transposons in pre-meiotic anthers from wild-type and MAGOKD plants.

Supplementary Table 4

List of predicted retrotransposons (LTRs) targeted by Hphasi.

Supplementary Table 5

List of new transposon insertions determined by LTR-seq.

Supplementary Table 6

List of differentially accumulated phosphopeptides from pre-meiotic anthers of wild-type plants exposed to heat stress.

Supplementary Table 7

Conservation of phosphorylated serine and threonine residues in different Argonautes.

Supplementary Table 8

List of oligonucleotides and synthetic DNA constructs.

Supplementary Table 9

Next-generation sequencing library details.

Supplementary Video 1

Electrostatic potential distribution on the molecular surface of the central cleft of native and phosphorylated MAGO2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, YS., Maple, R., Dürr, J. et al. A transposon surveillance mechanism that safeguards plant male fertility during stress. Nat. Plants 7, 34–41 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing