Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

ACC VERSUS ETHYLENE SIGNALLING

Ethylene’s fraternal twin steals the spotlight

1-Aminocyclopropane-1-carboxylic acid (ACC) has emerged as a signalling molecule in its own right, regulating distinct plant processes independently from its conversion to ethylene. Now it seems that ACC signalling has been steering plant development for hundreds of millions of years, predating the diversification of seed plants.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: ACC signalling is conserved in plants.

References

  1. Adams, D. O. & Yang, S. F. Proc. Natl Acad. Sci. USA 76, 170–174 (1979).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li, F. W. et al. Nat. Plants 4, 460–472 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li, D. et al. Nat. Plants https://doi.org/10.1038/s41477-020-00784-y (2020).

  4. Ju, C. et al. Nat. Plants 1, 14004 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Uji, T., Endo, H. & Mizuta, H. Front. Plant Sci. 11, 60 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tsuchisaka, A. et al. Genetics 183, 979–1003 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mou, W. et al. Nat. Commun. 11, 4082 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vanderstraeten, L., Depaepe, T., Bertrand, S. & Van Der Straeten, D. Front. Plant Sci. 10, 1591 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vaahtera, L., Schulz, J. & Hamann, T. Nat. Plants 5, 924–932 (2019).

    Article  PubMed  Google Scholar 

  10. Xu, S. L., Rahman, A., Baskin, T. I. & Kieber, J. J. Plant Cell 20, 3065–3079 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tsang, D. L., Edmond, C., Harrington, J. L. & Nühse, T. S. Plant Physiol. 156, 596–604 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yin, J. et al. J. Exp. Bot. 70, 963–972 (2019).

    Article  Google Scholar 

  13. Pattyn, J., Vaughan-hirsch, J. & Van de Poel, B. New Phytol. (in the press).

  14. Choi, J. et al. Front. Plant Sci. 10, 1092 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Shiono, K. & Taira, S. J. Agric. Food Chem. 68, 6770–6775 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Vong, K. et al. Nat. Commun. 10, 2–12 (2019).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bram Van de Poel.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van de Poel, B. Ethylene’s fraternal twin steals the spotlight. Nat. Plants 6, 1309–1310 (2020). https://doi.org/10.1038/s41477-020-00796-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-020-00796-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing