Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Root-derived GA12 contributes to temperature-induced shoot growth in Arabidopsis


Plants are able to sense a rise in temperature of several degrees, and appropriately adapt their metabolic and growth processes. To this end, plants produce various signalling molecules that act throughout the plant body. Here, we report that root-derived GA12, a precursor of the bioactive gibberellins, mediates thermo-responsive shoot growth in Arabidopsis. Our data suggest that root-to-shoot translocation of GA12 enables a flexible growth response to ambient temperature changes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Root-derived GA are essential for the thermal induction of shoot growth.
Fig. 2: Root-borne GA12 enhances hypocotyl elongation at 28 °C via a DELLA-dependent mechanism.

Data availability

All data generated or analysed during this study are included in the published article and its Supplementary Information.


  1. 1.

    Quint, M. et al. Molecular and genetic control of plant thermomorphogenesis. Nat. Plants 2, 15190 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Martins, S. et al. Brassinosteroid signaling-dependent root responses to prolonged elevated ambient temperature. Nat. Commun. 8, 309 (2017).

    Article  Google Scholar 

  3. 3.

    Kumar, S. V. et al. Transcription factor PIF4 controls the thermosensory activation of flowering. Nature 484, 242–245 (2012).

    CAS  Article  Google Scholar 

  4. 4.

    Davière, J.-M. & Achard, P. Gibberellin signaling in plants. Development 140, 1147–1151 (2013).

    Article  Google Scholar 

  5. 5.

    Achard, P. et al. Integration of plant responses to environmentally activated phytohormonal signals. Science 311, 91–94 (2006).

    CAS  Article  Google Scholar 

  6. 6.

    Colebrook, E. H., Thomas, S. G., Phillips, A. L. & Hedden, P. The role of gibberellin signaling in plant responses to abiotic stress. J. Exp. Bot. 217, 67–75 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Stavang, J. A. et al. Hormonal regulation of temperature-induced growth in Arabidopsis. Plant J. 60, 589–601 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Bai, L., Deng, H., Zhang, X., Yu, X. & Li, Y. Gibberellin is involved in inhibition of cucumber growth and nitrogen uptake at suboptimal root-zone temperature. PLoS ONE 11, e0156188 (2016).

    Article  Google Scholar 

  9. 9.

    Regnault, T. et al. The gibberellin precursor GA12 acts as a long-distance growth signal in Arabidopsis. Nat. Plants 1, 15073 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Binenbaum, J., Weinstain, R. & Shani, E. Gibberellin localization and transport in plants. Trends Plant Sci. 23, 410–421 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Hedden, P. & Thomas, S. G. Gibberellin biosynthesis and its regulation. Biochem. J. 444, 11–25 (2012).

    CAS  Article  Google Scholar 

  12. 12.

    Gaymard, F. et al. Identification and disruption of a plant shaker-like outward channel involved in K+ release into the xylem sap. Cell 94, 647–655 (1998).

    CAS  Article  Google Scholar 

  13. 13.

    de Lucas, M. et al. A molecular framework for light and gibberellin control of cell elongation. Nature 451, 480–484 (2008).

    Article  Google Scholar 

  14. 14.

    Regnault, T., Davière, J.-M., Heintz, D., Lange, T. & Achard, P. The gibberellin biosynthetic genes AtKAO1 and AtKAO2 have overlapping roles throughout Arabidopsis development. Plant J. 80, 462–474 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Hwang, I. & Goodman, H. M. An Arabidopsis thaliana root-specific kinase homolog is induced by dehydration, ABA, and NaCl. Plant J. 8, 37–43 (1995).

    CAS  Article  Google Scholar 

  16. 16.

    Osugi, A. et al. Systemic transport of trans-zeatin and its precursor have differing roles in Arabidopsis shoots. Nat. Plants 3, 17112 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    Saito, H. et al. The jasmonate-responsive GTR1 transporter is required for gibberellin-mediated stamen development in Arabidopsis. Nat. Commun. 6, 6095 (2015).

    Article  Google Scholar 

  18. 18.

    Tal, I. et al. The Arabidopsis NPF3 protein is a GA transporter. Nat. Commun. 7, 11486 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Reid, D. M., Crozier, A. & Harvey, B. M. The effects of flooding on the export of gibberellins from the root to the shoot. Planta 89, 346–379 (1969).

    Article  Google Scholar 

  20. 20.

    Lavender, D. P., Sweet, G. B., Zaerr, J. B. & Hermann, R. K. Spring shoot growth in Douglas fir may be initiated by gibberellins exported from the roots. Science 182, 838–839 (1973).

    CAS  Article  Google Scholar 

  21. 21.

    Nakamura, S. et al. Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Biosci. Biotechnol. Biochem. 74, 1315–1319 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Karimi, M., Inzé, D. & Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

    CAS  Article  Google Scholar 

  23. 23.

    Turnbull, C. G. N., Booker, J. P. & Leyser, O. Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J. 32, 255–262 (2002).

    CAS  Article  Google Scholar 

  24. 24.

    Lange, T. et al. Gibberellin biosynthesis in developing pumpkin seedlings. Plant Physiol. 139, 213–223 (2005).

    CAS  Article  Google Scholar 

Download references


We thank T.P. Sun for providing seeds of ga1-3 (Col-0 background) and P. Hedden for providing ga20ox1-2-3. This work was supported by the Centre National de la Recherche Scientifique and the French Ministry of Research and Higher Education.

Author information




L.C., T.R., L.S.-A., E.C., J.Z., D.H., N.L., M.J.P.L., T.L., J.-M.D. and P.A. performed experimental work. L.C., T.R., D.H., N.L., M.J.P.L., T.L., J.-M.D. and P.A. designed the experiments. M.S., M.J.P.L., T.L., J.-M.D. and P.A. realised the figures and wrote the paper.

Corresponding author

Correspondence to Patrick Achard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Supplementary Figures 1–5.

Reporting Summary

Supplementary Tables

Supplementary Tables 1–5.

Supplementary Dataset 1

Statistics (ANOVA and t-test), P values.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Supplementary Fig. 1

Statistical source data.

Source Data Supplementary Fig. 2

Statistical source data.

Source Data Supplementary Fig. 3

Statistical source data.

Source Data Supplementary Fig. 4

Statistical source data.

Source Data Fig. 2d

Unprocessed blots.

Source Data Supplementary Fig. 4b

Unprocessed blots.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Camut, L., Regnault, T., Sirlin-Josserand, M. et al. Root-derived GA12 contributes to temperature-induced shoot growth in Arabidopsis. Nat. Plants 5, 1216–1221 (2019).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing