Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

HIGH STEROL ESTER 1 is a key factor in plant sterol homeostasis

Abstract

Plants strictly regulate the levels of sterol in their cells, as high sterol levels are toxic. However, how plants achieve sterol homeostasis is not fully understood. We isolated an Arabidopsis thaliana mutant that abundantly accumulated sterol esters in structures of about 1 µm in diameter in leaf cells. We designated the mutant high sterol ester 1 (hise1) and called the structures sterol ester bodies. Here, we show that HISE1, the gene product that is altered in this mutant, functions as a key factor in plant sterol homeostasis on the endoplasmic reticulum (ER) and participates in a fail-safe regulatory system comprising two processes. First, HISE1 downregulates the protein levels of the β-hydroxy β-methylglutaryl-CoA reductases HMGR1 and HMGR2, which are rate-limiting enzymes in the sterol synthesis pathway, resulting in suppression of sterol overproduction. Second, if the first process is not successful, excess sterols are converted to sterol esters by phospholipid sterol acyltransferase1 (PSAT1) on ER microdomains and then segregated in SE bodies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The A. thaliana mutant hise1 abnormally develops lipophilic structures.
Fig. 2: hise1 mutants accumulate much higher levels of sterol esters in SE bodies.
Fig. 3: Hyperaccumulation of HMGR proteins in hise1 mutant.
Fig. 4: hise1 mutant has dramatically higher sterol-producing activity than the wild type.
Fig. 5: Deficiency of PSAT1 causes defects in SE-body formation and plant growth of hise1.
Fig. 6: HISE1 localizes to the ER whereas PSAT1 localizes to ER microdomains.
Fig. 7: A hypothetical model of a HISE1-dependent failsafe regulatory system for sterol homeostasis via HMGR downregulation.

Similar content being viewed by others

Data availability

Sequence data from this study can be found in the GenBank/EMBL data libraries under the following accession numbers: CLO3 (At2g33380, NM_128898), HISE1 (At1g60995, NM_001084280), PSAT1 (At1g04010, NM_100282), HMGR1 (At1g76490, NM_106299), HMGR2 (At2g17370, NM_127292) and EF1a (At5g60390, NM_125432). The data that support the findings of this study are available from the corresponding author on request.

References

  1. Ferrer, A., Altabella, T., Arro, M. & Boronat, A. Emerging roles for conjugated sterols in plants. Prog. Lipid. Res. 67, 27–37 (2017).

    CAS  PubMed  Google Scholar 

  2. Banas, A. et al. Cellular sterol ester synthesis in plants is performed by an enzyme (phospholipid:sterol acyltransferase) different from the yeast and mammalian acyl-CoA:sterol acyltransferases. J. Biol. Chem. 280, 34626–34634 (2005).

    CAS  PubMed  Google Scholar 

  3. Bouvier-Navé, P. et al. Involvement of the Phospholipid Sterol Acyltransferase1 in plant sterol homeostasis and leaf senescence. Plant Physiol. 152, 107–119 (2010).

    PubMed  PubMed Central  Google Scholar 

  4. Schaller, H. et al. Expression of the Hevea brasiliensis (H.B.K.) Mull. Arg. 3-hydroxy-3-methylglutaryl-coenzyme A reductase 1 in tobacco results in sterol overproduction. Plant Physiol. 109, 761–770 (1995).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Maillot-Vernier, P., Gondet, L., Schaller, H., Benveniste, P. & Belliard, G. Genetic study and further biochemical characterization of a tobacco mutant that overproduces sterols. Mol. Gen. Genet. 231, 33–40 (1991).

    CAS  PubMed  Google Scholar 

  6. Gondet, L., Bronner, R. & Benveniste, P. Regulation of sterol content in membranes by subcellular compartmentation of steryl-esters accumulating in a sterol-overproducing tobacco mutant. Plant Physiol. 105, 509–518 (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wilkinson, S. C., Powls, R. & Goad, L. J. The effects of excess exogenous mevalonic acid on sterol and steryl ester biosynthesis in celery (Apium graveolens) cell suspension cultures. Phytochemistry 37, 1031–1035 (1994).

    CAS  Google Scholar 

  8. Diener, A. C. et al. STEROL METHYLTRANSFERASE 1 controls the level of cholesterol in plants. Plant Cell 12, 853–870 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Sonawane, P. D. et al. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat. Plants 3, 16205 (2016).

    PubMed  Google Scholar 

  10. Liu, J. & Nes, W. D. Steroidal triterpenes: design of substrate-based inhibitors of ergosterol and sitosterol synthesis. Molecules 14, 4690–4706 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Burg, J. S. & Espenshade, P. J. Regulation of HMG-CoA reductase in mammals and yeast. Prog. Lipid. Res. 50, 403–410 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Pollier, J. et al. The protein quality control system manages plant defence compound synthesis. Nature 504, 148–152 (2013).

    CAS  PubMed  Google Scholar 

  13. Chye, M. L., Tan, C. T. & Chua, N. H. Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis: hmg1 and hmg3 are differentially expressed. Plant Mol. Biol. 19, 473–484 (1992).

    CAS  PubMed  Google Scholar 

  14. Suzuki, M. et al. Loss of function of 3-hydroxy-3-methylglutaryl coenzyme A reductase 1 (HMG1) in Arabidopsis leads to dwarfing, early senescence and male sterility, and reduced sterol levels. Plant J. 37, 750–761 (2004).

    CAS  PubMed  Google Scholar 

  15. Ohyama, K., Suzuki, M., Masuda, K., Yoshida, S. & Muranaka, T. Chemical phenotypes of the hmg1 and hmg2 mutants of Arabidopsis demonstrate the in-planta role of HMG-CoA reductase in triterpene biosynthesis. Chem. Pharm. Bull. 55, 1518–1521 (2007).

    CAS  PubMed  Google Scholar 

  16. Ferrero, S. et al. Proliferation and morphogenesis of the endoplasmic reticulum driven by the membrane domain of 3-hydroxy-3-methylglutaryl coenzyme A reductase in plant cells. Plant Physiol. 168, 899–914 (2015).

    PubMed  PubMed Central  Google Scholar 

  17. Learned, R. M. & Fink, G. R. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase from Arabidopsis thaliana is structurally distinct from the yeast and animal enzymes. Proc. Natl Acad. Sci. USA 86, 2779–2783 (1989).

    CAS  PubMed  Google Scholar 

  18. Gardner, R. G., Shearer, A. G. & Hampton, R. Y. In vivo action of the HRD ubiquitin ligase complex: mechanisms of endoplasmic reticulum quality control and sterol regulation. Mol. Cell Biol. 21, 4276–4291 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Faulkner, R. A., Nguyen, A. D., Jo, Y. & DeBose-Boyd, R. A. Lipid-regulated degradation of HMG-CoA reductase and Insig-1 through distinct mechanisms in insect cells. J. Lipid Res. 54, 1011–1022 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Doblas, V. G. et al. The SUD1 gene encodes a putative E3 ubiquitin ligase and is a positive regulator of 3-hydroxy-3-methylglutaryl coenzyme a reductase activity in Arabidopsis. Plant Cell 25, 728–743 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Erffelinck, M. L. & Goossens, A. Endoplasmic reticulum-associated degradation (ERAD)-dependent control of (tri)terpenoid metabolism in plants. Planta Med. 84, 874–880 (2018).

    CAS  PubMed  Google Scholar 

  22. Shimada, T. L. et al. Leaf oil body functions as a subcellular factory for the production of a phytoalexin in Arabidopsis. Plant Physiol. 164, 105–118 (2014).

    CAS  PubMed  Google Scholar 

  23. Shimada, T. L., Takano, Y. & Hara-Nishimura, I. Oil body-mediated defense against fungi: From tissues to ecology. Plant Signal. Behav. 10, e989036 (2015).

    PubMed  PubMed Central  Google Scholar 

  24. Caelles, C., Ferrer, A., Balcells, L., Hegardt, F. G. & Boronat, A. Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase. Plant Mol. Biol. 13, 627–638 (1989).

    CAS  PubMed  Google Scholar 

  25. Enjuto, M. et al. Arabidopsis thaliana contains two differentially expressed 3-hydroxy-3-methylglutaryl-CoA reductase genes, which encode microsomal forms of the enzyme. Proc. Natl Acad. Sci. USA 91, 927–931 (1994).

    CAS  PubMed  Google Scholar 

  26. Kobayashi, K. et al. LOVASTATIN INSENSITIVE 1, a novel pentatricopeptide repeat protein, is a potential regulatory factor of isoprenoid biosynthesis in Arabidopsis. Plant Cell Physiol. 48, 322–331 (2007).

    CAS  PubMed  Google Scholar 

  27. Kopischke, M. et al. Impaired sterol ester synthesis alters the response of Arabidopsis thaliana to Phytophthora infestans. Plant J. 73, 456–468 (2013).

    CAS  PubMed  Google Scholar 

  28. Yang, B. et al. The critical role of membralin in postnatal motor neuron survival and disease. eLife 4, e06500 (2015).

    PubMed Central  Google Scholar 

  29. Zhu, B. et al. ER-associated degradation regulates Alzheimer’s amyloid pathology and memory function by modulating γ-secretase activity. Nat. Commun. 8, 1472 (2017).

    PubMed  PubMed Central  Google Scholar 

  30. Tamura, K., Shimada, T., Kondo, M., Nishimura, M. & Hara-Nishimura, I. KATAMARI1/MURUS3 is a novel Golgi membrane protein that is required for endomembrane organization in Arabidopsis. Plant Cell 17, 1764–1776 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Shimada, T. L., Shimada, T., Takahashi, H., Fukao, Y. & Hara-Nishimura, I. A novel role for oleosins in freezing tolerance of oilseeds in Arabidopsis thaliana. Plant J. 55, 798–809 (2008).

    CAS  PubMed  Google Scholar 

  32. Karimi, M., Inze, D. & Depicker, A. GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci. 7, 193–195 (2002).

    CAS  PubMed  Google Scholar 

  33. Shimada, T. L., Shimada, T. & Hara-Nishimura, I. A rapid and non-destructive screenable marker, FAST, for identifying transformed seeds of Arabidopsis thaliana. Plant J. 61, 519–528 (2010).

    CAS  PubMed  Google Scholar 

  34. Nakamura, S. et al. Gateway binary vectors with the bialaphos resistance gene, bar, as a selection marker for plant transformation. Biosci. Biotechnol. Biochem. 74, 1315–1319 (2010).

    CAS  PubMed  Google Scholar 

  35. Nakagawa, T. et al. Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Biosci. Biotechnol. Biochem. 71, 2095–2100 (2007).

    CAS  PubMed  Google Scholar 

  36. Fujimoto, S., Sugano, S. S., Kuwata, K., Osakabe, K. & Matsunaga, S. Visualization of specific repetitive genomic sequences with fluorescent TALEs in Arabidopsis thaliana. J. Exp. Bot. 67, 6101–6110 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Shishido, Y. et al. A covalent G-site inhibitor for glutathione S-transferase Pi (GSTP1-1). Chem. Commun. 53, 11138–11141 (2017).

    CAS  Google Scholar 

  38. Tang, J., Kobayashi, K., Suzuki, M., Matsumoto, S. & Muranaka, T. The mitochondrial PPR protein LOVASTATIN INSENSITIVE 1 plays regulatory roles in cytosolic and plastidial isoprenoid biosynthesis through RNA editing. Plant J. 61, 456–466 (2010).

    CAS  PubMed  Google Scholar 

  39. Maurey, K., Wolf, F. & Golbeck, J. 3-hydroxy-3-methylglutaryl coenzyme A reductase activity in Ochromonas malhamensis: a system to study the relationship between enzyme activity and rate of steroid biosynthesis. Plant Physiol. 82, 523–527 (1986).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bach, T. J., Rogers, D. H. & Rudney, H. Detergent-solubilization, purification, and characterization of membrane-bound 3-hydroxy-3-methylglutaryl-coenzyme A reductase from radish seedlings. Eur. J. Biochem. 154, 103–111 (1986).

    CAS  PubMed  Google Scholar 

  41. Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).

    CAS  PubMed  Google Scholar 

  42. Bechtold, N. & Pelletier, G. In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol. Biol. 82, 259–266 (1998).

    CAS  PubMed  Google Scholar 

  43. Kaido, M., Funatsu, N., Tsuno, Y., Mise, K. & Okuno, T. Viral cell-to-cell movement requires formation of cortical punctate structures containing Red clover necrotic mosaic virus movement protein. Virology 413, 205–215 (2011).

    CAS  PubMed  Google Scholar 

  44. Mitsuhashi, N., Shimada, T., Mano, S., Nishimura, M. & Hara-Nishimura, I. Characterization of organelles in the vacuolar-sorting pathway by visualization with GFP in tobacco BY-2 cells. Plant Cell Physiol. 41, 993–1001 (2000).

    CAS  PubMed  Google Scholar 

  45. Ueda, H. et al. Phosphorylation of the C terminus of RHD3 has a critical role in homotypic ER membrane fusion in Arabidopsis. Plant Physiol. 170, 867–880 (2016).

    CAS  PubMed  Google Scholar 

  46. Uemura, T. et al. Qa-SNAREs localized to the trans-Golgi network regulate multiple transport pathways and extracellular disease resistance in plants. Proc. Natl Acad. Sci. USA 109, 1784–1789 (2012).

    CAS  PubMed  Google Scholar 

  47. Nelson, B. K., Cai, X. & Nebenfuhr, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).

    CAS  PubMed  Google Scholar 

  48. Uemura, T. et al. Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct. Funct. 29, 49–65 (2004).

    CAS  PubMed  Google Scholar 

  49. Choi, S. W. et al. RABA members act in distinct steps of subcellular trafficking of the FLAGELLIN SENSING2 receptor. Plant Cell 25, 1174–1187 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sparkes, I. A., Runions, J., Kearns, A. & Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 1, 2019–2025 (2006).

    CAS  PubMed  Google Scholar 

  51. Brocard, L. et al. Proteomic analysis of lipid droplets from Arabidopsis aging leaves brings new insight into their biogenesis and functions. Front. Plant Sci. 8, 894 (2017).

    PubMed  PubMed Central  Google Scholar 

  52. Okazaki, Y. et al. A new class of plant lipid is essential for protection against phosphorus depletion. Nat. Commun. 4, 1510 (2013).

    PubMed  PubMed Central  Google Scholar 

  53. Okazaki, Y. & Saito, K. Plant lipidomics using UPLC–QTOF-MS. Methods Mol. Biol. 1778, 157–169 (2018).

    CAS  PubMed  Google Scholar 

  54. Yamashita, K. et al. Use of novel picolinoyl derivatization for simultaneous quantification of six corticosteroids by liquid chromatography–electrospray ionization tandem mass spectrometry. J. Chromatogr. A. 1173, 120–128 (2007).

    CAS  PubMed  Google Scholar 

  55. Okazaki, Y. et al. Induced accumulation of glucuronosyldiacylglycerol in tomato and soybean under phosphorus deprivation. Physiol. Plant. 155, 33–42 (2015).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T. Nakagawa (Shimane University), S. Ishiguro (Nagoya University), M. Kaido (Kyoto University), T. Uemura (University of Tokyo), A. Nebenführ (University of Tennessee), E. Ito (International Christian University), K. Ebine (National Institute for Basic Biology), T. Goh (Nara Institute of Science and Technology) and Plant System Biology (VIB) for their donations of the vectors; S. Arai (Ochanomizu University), R. Iwahori (Ochanomizu University) and K. Takano (RIKEN Center for Sustainable Resource Science) for their technical assistance; the Arabidopsis Biological Resource Center for providing seeds of A. thaliana T-DNA insertion mutants; the Model Plant Research Facility (NIBB BioResource Center) and the Japan Advanced Plant Science Network (RIKEN) for their technical support; T. Muranaka (Osaka University) for the HMG1cd antibody; M. Hanaoka (Chiba University) for real-time PCR analysis; and J. Raymond (Eigoken) for critical readings of this manuscript. This work was supported by Grants-in-Aid for Scientific Research to I.H.-N. (no. 15H05776 and 22000014) and to T.L.S. (no. 16K18834 and 19K05809) from the Japan Society for the Promotion of Science (JSPS), by Leading Initiative for Excellent Young Researchers (LEADER) to T.L.S. (no. J16HJ00026) from the Ministry of Education, Culture, Sports, Science and Technology in Japan (MEXT), by SUNBOR GRANT of Suntory Foundation for life science to T.L.S., by Kato Memorial Bioscience Foundation to T.L.S., by Phytochemical Plant Molecular Science of Strategic Priority Research Promotion Program to T.L.S. and K.S. from Chiba University, and by the Hirao Taro Foundation of KONAN GAKUEN for Academic Research to I.H.-N.

Author information

Authors and Affiliations

Authors

Contributions

T.L.S., T.S. and I.H.-N. designed the research. T.L.S. performed the experiments, except for lipidome, proteome and radiolabelling experiments. Y.O., Y.H. and K.S. performed lipidome experiments, K.K. performed proteome experiments, and K.O. and M.K. performed in vivo- and in vitro-radiolabelling experiments. H.U. contributed to cell biological analysis and A.N., T.U. and Y.T. contributed to discussions. T.L.S. and I.H.-N. analysed the data and wrote the manuscript.

Corresponding author

Correspondence to Ikuko Hara-Nishimura.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Plants thanks Narciso Campos, Hubert Schaller and the other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimada, T.L., Shimada, T., Okazaki, Y. et al. HIGH STEROL ESTER 1 is a key factor in plant sterol homeostasis. Nat. Plants 5, 1154–1166 (2019). https://doi.org/10.1038/s41477-019-0537-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41477-019-0537-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing