A CLE–SUNN module regulates strigolactone content and fungal colonization in arbuscular mycorrhiza

Article metrics

Abstract

During arbuscular mycorrhizal symbiosis, colonization of the root is modulated in response to the physiological status of the plant, with regulation occurring locally and systemically. Here, we identify differentially expressed genes encoding CLAVATA3/ESR-related (CLE) peptides that negatively regulate colonization levels by modulating root strigolactone content. CLE function requires a receptor-like kinase, SUNN; thus, a CLE–SUNN–strigolactone feedback loop is one avenue through which the plant modulates colonization levels.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Expression of M. truncatula CLE genes and MtCLE overexpression phenotypes.
Fig. 2: Overexpression of MtCLE33 and MtCLE53 in roots reduces strigolactone levels in a SUNN-dependent manner.
Fig. 3: Model for MtCLE33 and MtCLE53 function and their dependency on SUNN.

Data availability

The data that support the findings of this study are available from the corresponding author on request. RNA sequencing raw reads are deposited in the NCBI Sequence Read Archive database (accession number SRP198429).

References

  1. 1.

    Kobae, Y. et al. Plant Cell Physiol. 59, 544–553 (2018).

  2. 2.

    Akiyama, K., Matsuzaki, K.-I. & Hayashi, H. Nature 435, 824–827 (2005).

  3. 3.

    Besserer, A. et al. PLoS Biol. 4, e226 (2006).

  4. 4.

    Genre, A. et al. New Phytol. 198, 190–202 (2013).

  5. 5.

    Oldroyd, G. E. D. Nat. Rev. Microbiol. 11, 252–263 (2013).

  6. 6.

    Menge, J. A. et al. New Phytol. 80, 575–578 (1978).

  7. 7.

    Breuillin, F. et al. Plant J. 64, 1002–1017 (2010).

  8. 8.

    Liu, W. et al. Plant Cell 23, 3853–3865 (2011).

  9. 9.

    Kretzschmar, T. et al. Nature 483, 341–344 (2012).

  10. 10.

    Vierheilig, H. et al. Soil Biol. Biochem. 32, 589–595 (2000).

  11. 11.

    Vierheilig, H. J. Plant Physiol. 161, 339–341 (2004).

  12. 12.

    Meixner, C. et al. Planta 222, 709–715 (2005).

  13. 13.

    Solaiman, M. Z. et al. J. Plant Res. 113, 443–448 (2000).

  14. 14.

    Morandi, D. et al. Mycorrhiza 10, 37–42 (2000).

  15. 15.

    Wang, C., Reid, J. B. & Foo, E. Front. Plant Sci. 9, 988 (2018).

  16. 16.

    Tsikou, D. et al. Science 362, 233–236 (2018).

  17. 17.

    Sasaki, T. et al. Nat. Commun. 5, 4983 (2014).

  18. 18.

    Fletcher, J. C. et al. Science 283, 1911–1914 (1999).

  19. 19.

    Hastwell, A. H. et al. Sci. Rep. 7, 9384 (2017).

  20. 20.

    Goad, D. M., Zhu, C. & Kellogg, E. A. New Phytol. 216, 605–616 (2016).

  21. 21.

    Hirakawa, Y. & Sawa, S. Curr. Opin. Plant Biol. 51, 81–87 (2019).

  22. 22.

    Funayama-Noguchi, S. et al. J. Plant Res. 124, 155–163 (2011).

  23. 23.

    Handa, Y. et al. Plant Cell Physiol. 56, 1490–1511 (2015).

  24. 24.

    Le Marquer, M., Bécard, G. & Frei dit Frey, N. New Phytol. 222, 1030–1042 (2019).

  25. 25.

    Javot, H. et al. Proc. Natl Acad. Sci. USA 104, 1720–1725 (2007).

  26. 26.

    Mortier, V. et al. Plant Physiol. 153, 222–237 (2010).

  27. 27.

    Liao, P. et al. Biotechnol. Adv. 34, 697–713 (2016).

  28. 28.

    van Zeijl, A. et al. BMC Plant Biol. 15, 260 (2015).

  29. 29.

    Seto, Y. & Yamaguchi, S. Curr. Opin. Plant Biol. 21, 1–6 (2014).

  30. 30.

    Gomez-Roldan, V. et al. Nature 455, 189–194 (2008).

  31. 31.

    Tokunaga, T., Hayashi, H. & Akiyama, K. Phytochemistry 111, 91–97 (2015).

  32. 32.

    Thuring, J. W. J. F., Nefkens, G. H. L. & Zwanenburg, B. J. Agric. Food Chem. 45, 2278–2283 (1997).

  33. 33.

    Scaffidi, A. et al. Plant Physiol. 165, 1221–1232 (2014).

  34. 34.

    Nimchuk, Z. L. et al. Development 142, 1043–1049 (2015).

  35. 35.

    Schnabel, E. et al. Plant Mol. Biol. 58, 809–822 (2005).

  36. 36.

    Foo, E., Ferguson, B. J. & Reid, J. B. Ann. Bot. 113, 1037–1045 (2014).

  37. 37.

    Morandi, D. et al. Mycorrhiza 19, 435–441 (2009).

  38. 38.

    López-Ráez, J. A. et al. J. Plant Physiol. 168, 294–297 (2011).

  39. 39.

    Somssich, M. et al. Development 143, 3238–3248 (2016).

  40. 40.

    Wang, G., Zhang, G. & Wu, M. Front Plant Sci. 6, 1211 (2015).

Download references

Acknowledgements

We apologize to those authors whose work we have not cited due to reference number constraints. We thank S. Roh and S. Cotraccia for technical assistance, K. Akiyama (Osaka Prefecture University, Osaka, Japan) for providing an authentic standard of medicaol and B. Zwanenburg (University of Nijmegen, Nijmegen, the Netherlands) for providing rac-GR24. Financial support for the project was provided by the US National Science Foundation grants IOS-1127155 and the US Department of Energy Office of Science, Office of Biological and Environmental Research (grant no. DE-SC0012460). L.M.M. was supported by postdoctoral fellowships from the Swiss National Science Foundation (Early Postdoc.Mobility) and the German Research Foundation (DFG). H.J.B. was supported by the European Research Council (ERC Advanced grant CHEMCOMRHIZO, 670211) and K.F. by the Netherlands Organisation for Scientific Research (NWO-ECHO grant 711.018.010).

Author information

L.M.M. and M.J.H. conceived the experiments and analysed the data. E.S. and J.F. provided genome-level identification of CLE genes and sunn mutants. K.F. and H.J.B. analysed and interpreted strigolactone levels. X.S. and Z.F. processed the RNA sequencing data and generated differential expression data. L.M.M. carried out all other experiments. L.M.M. and M.J.H. wrote the manuscript.

Correspondence to Maria J. Harrison.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Plants thanks Caroline Gutjahr and other, anonymous, reviewers for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Supplementary Methods, Supplementary Table 3 and Supplementary References.

Reporting Summary

Supplementary Table 1

Comparison of numbers of significantly differentially regulated genes.

Supplementary Table 2

Gene expression in 35S::MtCLE53 and 35S::GUS roots.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark