The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration


Stomata are microscopic pores found on the surfaces of leaves that act to control CO2 uptake and water loss. By integrating information derived from endogenous signals with cues from the surrounding environment, the guard cells, which surround the pore, ‘set’ the stomatal aperture to suit the prevailing conditions. Much research has concentrated on understanding the rapid intracellular changes that result in immediate changes to the stomatal aperture. In this study, we look instead at how stomata acclimate to longer timescale variations in their environment. We show that the closure-inducing signals abscisic acid (ABA), increased CO2, decreased relative air humidity and darkness each access a unique gene network made up of clusters (or modules) of common cellular processes. However, within these networks some gene clusters are shared amongst all four stimuli. All stimuli modulate the expression of members of the PYR/PYL/RCAR family of ABA receptors. However, they are modulated differentially in a stimulus-specific manner. Of the six members of the PYR/PYL/RCAR family expressed in guard cells, PYL2 is sufficient for guard cell ABA-induced responses, whereas in the responses to CO2, PYL4 and PYL5 are essential. Overall, our work shows the importance of ABA as a central regulator and integrator of long-term changes in stomatal behaviour, including sensitivity, elicited by external signals. Understanding this architecture may aid in breeding crops with improved water and nutrient efficiency.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Guard cell signalling pathway analysis.
Fig. 2: Integrative networks analysis identifies distinct stomatal closing signal modules.
Fig. 3: PYL2 is sufficient for stomatal ABA sensitivity.
Fig. 4: ABA-induced movements of individual stoma.
Fig. 5: PYL4 and PYL5 render guard cells CO2 sensitive.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Microarray data of the ABA and low air humidity treatments that were taken from ref. 6 were deposited in the Gene Expression Omnibus (GEO) database with accession no. GSE41054. The microarray data from CO2 and darkness experiments were deposited in the same database under GSE118520.

Code availability

Algorithms and statistics used in the analyses are based on published approaches available in R packages (mainly Bioconductor framework) and other cited publicly available repositories.


  1. 1.

    Hetherington, A. M. & Woodward, F. I. The role of stomata in sensing and driving environmental change. Nature 424, 901–908 (2003).

    CAS  Article  Google Scholar 

  2. 2.

    Vialet-Chabrand, S. R. M. et al. Temporal dynamics of stomatal behavior: modeling and implications for photosynthesis and water use. Plant Physiol. 174, 603–613 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Lawson, T. & Blatt, M. R. Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol. 164, 1556–1570 (2014).

    CAS  Article  Google Scholar 

  4. 4.

    Assmann, S. M. & Jegla, T. Guard cell sensory systems: recent insights on stomatal responses to light, abscisic acid, and CO2. Curr. Opin. Plant Biol. 33, 157–167 (2016).

    CAS  Article  Google Scholar 

  5. 5.

    Engineer, C. B. et al. CO2 sensing and CO2 peculation of stomatal conductance: advances and open questions. Trends Plant Sci. 21, 16–30 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Bauer, H. et al. The stomatal response to reduced relative humidity requires guard cell-autonomous ABA synthesis. Curr. Biol. 23, 53–57 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Merilo, E. et al. PYR/RCAR receptors contribute to ozone-, reduced air humidity-, darkness- and CO2-induced stomatal regulation. Plant Physiol. 162, 1652–1668 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Chater, C. et al. Elevated CO2-induced responses in stomata require ABA and ABA signaling. Curr. Biol. 25, 2709–2716 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Hedrich, R. & Geiger, D. Biology of SLAC1-type anion channels - from nutrient uptake to stomatal closure. New Phytol. 216, 46–61 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Scherzer, S., Maierhofer, T., Al-Rasheid, K. A. S., Geiger, D. & Hedrich, R. Multiple calcium-dependent kinases modulate ABA-activated guard cell anion channels. Mol. Plant 5, 1409–1412 (2012).

    CAS  Article  Google Scholar 

  11. 11.

    Ma, Y. et al. Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064–1068 (2009).

    CAS  PubMed  Google Scholar 

  12. 12.

    Park, S. Y. et al. Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068–1071 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Santiago, J. et al. Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J. 60, 575–588 (2009).

    CAS  Article  Google Scholar 

  14. 14.

    Munemasa, S. et al. Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr. Opin. Plant Biol. 28, 154–162 (2015).

    CAS  Article  Google Scholar 

  15. 15.

    Hedrich, R. Ion channels in plants. Physiol. Rev. 92, 1777–1811 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Franks, P. J., Leitch, I. L., Ruszala, E. M., Hetherington, A. M. & Beerling, D. J. Physiological framework for adaptation of stomata to CO2 from glacial to future concentrations. Philos. Trans. R. Soc. B 367, 537–546 (2012).

    CAS  Article  Google Scholar 

  17. 17.

    Woodward, F. I. Stomatal numbers are sensitive to increases in CO2 from preindustrial levels. Nature 327, 617–618 (1987).

    Article  Google Scholar 

  18. 18.

    Gray, J. E. et al. The HIC signalling pathway links CO2 perception to stomatal development. Nature 408, 713–716 (2000).

    CAS  Article  Google Scholar 

  19. 19.

    Doheny-Adams, T., Hunt, L., Franks, P. J., Beerling, D. J. & Gray, J. E. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philos. Trans. R. Soc. B 367, 547–555 (2012).

    CAS  Article  Google Scholar 

  20. 20.

    Casson, S. A. et al. Phytochrome B and PIF4 regulate stomatal development in response to light quantity. Curr. Biol. 19, 229–234 (2009).

    CAS  Article  Google Scholar 

  21. 21.

    Casson, S. A. & Hetherington, A. M. Phytochrome B is required for light-mediated systemic control of stomatal development. Curr. Biol. 24, 1216–1221 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Franks, P. J., T, W. D.-A., Britton-Harper, Z. J. & Gray, J. E. Increasing water-use efficiency directly through genetic manipulation of stomatal density. New Phytol. 207, 188–195 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Pantin, F. et al. Developmental priming of stomatal sensitivity to abscisic acid by leaf microclimate. Curr. Biol. 23, 1805–1811 (2013).

    CAS  Article  Google Scholar 

  24. 24.

    Aliniaeifard, S. & van Meeteren, U. Can prolonged exposure to low VPD disturb the ABA signalling in stomatal guard cells? J. Exp. Bot. 64, 3551–3566 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Obayashi, T., Nishida, K., Kasahara, K. & Kinoshita, K. ATTED-II updates: condition-specific gene coexpression to extend coexpression analyses and applications to a broad range of flowering plants. Plant Cell Physiol. 52, 213–219 (2011).

    CAS  Article  Google Scholar 

  26. 26.

    Bauer, H. et al. How do stomata sense reductions in atmospheric relative humidity? Mol. Plant 6, 1703–1706 (2013).

    CAS  Article  Google Scholar 

  27. 27.

    Kong, W. et al. Two novel flavin-containing monooxygenases involved in biosynthesis of aliphatic glucosinolates. Front. Plant Sci. 7, 1292 (2016).

    PubMed  PubMed Central  Google Scholar 

  28. 28.

    Gonzalez-Guzman, M. et al. Arabidopsis PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and transcriptional response to abscisic acid. Plant Cell 24, 2483–2496 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Weng, J. K., Ye, M., Li, B. & Noel, J. P. Co-evolution of hormone metabolism and signaling networks expands plant adaptive plasticity. Cell 166, 881–893 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Zhao, Y. et al. Arabidopsis duodecuple mutant of PYL ABA receptors reveals PYL repression of ABA-independent SnRK2 activity. Cell Rep. 23, 3340–3351 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Antoni, R. et al. Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiol. 158, 970–980 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Tischer, S. V. et al. Combinatorial interaction network of abscisic acid receptors and coreceptors from Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 114, 10280–10285 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    Antoni, R. et al. Pyrabactin resistance1-like 8 plays an important role for the regulation of abscisic acid signaling in root. Plant Physiol. 161, 931–941 (2013).

    CAS  Article  Google Scholar 

  34. 34.

    Belda-Palazon, B. et al. PYL8 mediates ABA perception in the root through non-cell-autonomous and ligand-stabilization-based mechanisms. Proc. Natl Acad. Sci. USA 115, E11857–E11863 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Zhao, Y. et al. ABA receptor PYL9 promotes drought resistance and leaf senescence. Proc. Natl Acad. Sci. USA 113, 1949–1954 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Pri-Tal, O., Shaar-Moshe, L., Wiseglass, G., Peleg, Z. & Mosquna, A. Non-redundant functions of the dimeric ABA receptor BdPYL1 in the grass Brachypodium. Plant J. 92, 774–786 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Yang, Y., Costa, A., Leonhardt, N., Siegel, R. S. & Schroeder, J. I. Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool. Plant Methods 4, 6 (2008).

    Article  Google Scholar 

  38. 38.

    Muller, H. M. et al. The desert plant Phoenix dactylifera closes stomata via nitrate-regulated SLAC1 anion channel. New Phytol. 216, 150–162 (2017).

    Article  Google Scholar 

  39. 39.

    Ache, P. et al. Stomatal action directly feeds back on leaf turgor: new insights into the regulation of the plant water status from non-invasive pressure probe measurements. Plant J. 62, 1072–1082 (2010).

    CAS  PubMed  Google Scholar 

  40. 40.

    Raschke, K. Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L. Planta 125, 243–259 (1975).

    CAS  Article  Google Scholar 

  41. 41.

    Webb, A. A. & Hetherington, A. M. Convergence of the abscisic acid, CO2, and extracellular calcium signal transduction pathways in stomatal guard cells. Plant Physiol. 114, 1557–1560 (1997).

    CAS  Article  Google Scholar 

  42. 42.

    Nishimura, N. et al. PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J. 61, 290–299 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    Yin, Y. et al. Difference in abscisic acid perception mechanisms between closure induction and opening inhibition of stomata. Plant Physiol. 163, 600–610 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Hsu, P. K. et al. Abscisic acid-independent stomatal CO2 signal transduction pathway and convergence of CO2 and ABA signaling downstream of OST1 kinase. Proc. Natl Acad. Sci. USA 115, E9971–E9980 (2018).

    CAS  Article  Google Scholar 

  45. 45.

    Bensmihen, S. et al. Analysis of an activated ABI5 allele using a new selection method for transgenic Arabidopsis seeds. FEBS Lett. 561, 127–131 (2004).

    CAS  Article  Google Scholar 

  46. 46.

    Deblaere, R. et al. Efficient octopine Ti plasmid-derived vectors for Agrobacterium-mediated gene transfer to plants. Nucleic Acids Res. 13, 4777–4788 (1985).

    CAS  Article  Google Scholar 

  47. 47.

    Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    CAS  Article  Google Scholar 

  48. 48.

    Huang, S. et al. Ca2+ signals in guard cells enhance the efficiency by which ABA triggers stomatal closure. New Phytol. (2019).

    CAS  Article  Google Scholar 

  49. 49.

    Geiger, D. et al. Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Sci. Signal 4, ra32 (2011).

    Article  Google Scholar 

  50. 50.

    Geilfus, C. M., Tenhaken, R. & Carpentier, S. C. Transient alkalinization of the leaf apoplast stiffens the cell wall during onset of chloride salinity in corn leaves. J. Biol. Chem. 292, 18800–18813 (2017).

    CAS  Article  Google Scholar 

  51. 51.

    Huber, W. et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat. Methods 12, 115–121 (2015).

    CAS  Article  Google Scholar 

  52. 52.

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2011).

  53. 53.

    Shi, W., Oshlack, A. & Smyth, G. K. Optimizing the noise versus bias trade-off for Illumina whole genome expression BeadChips. Nucleic Acids Res. 38, e204 (2010).

    Article  Google Scholar 

  54. 54.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

    Article  Google Scholar 

  55. 55.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate - a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 57, 289–300 (1995).

    Google Scholar 

  56. 56.

    Wu, D. & Smyth, G. K. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 40, e133 (2012).

    CAS  Article  Google Scholar 

  57. 57.

    Gentleman, R. C. et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

    Article  Google Scholar 

  58. 58.

    Szklarczyk, D. et al. The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res. 39, D561–D568 (2011).

    CAS  Article  Google Scholar 

  59. 59.

    Dittrich, M. T., Klau, G. W., Rosenwald, A., Dandekar, T. & Muller, T. Identifying functional modules in protein–protein interaction networks: an integrated exact approach. Bioinformatics 24, i223–i231 (2008).

    CAS  Article  Google Scholar 

  60. 60.

    Beisser, D., Klau, G. W., Dandekar, T., Muller, T. & Dittrich, M. T. BioNet: an R-package for the functional analysis of biological networks. Bioinformatics 26, 1129–1130 (2010).

    CAS  Article  Google Scholar 

  61. 61.

    Zeileis, A. Econometric computing with HC and HAC covariance matrix estimators. J. Stat. Softw. 11, 1–17 (2004).

    Article  Google Scholar 

  62. 62.

    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).

    Article  Google Scholar 

Download references


Work in the Hedrich laboratory was supported by a grant from King Saud University Deanship for Scientific Research, International Research Group Programme (IRG14-22), Riyadh, Saudi Arabia, and that of the Rodriguez laboratory was supported by the Ministerio de Ciencia e Innovacion, Fondo Europeo de Desarrollo Regional and Consejo Superior de Investigaciones Cientificas (grants BIO2014-52537-R and BIO2017-82503-R, to P.L.R.). M.D. was supported by the CRC/Transregio 124 – FungiNet funded by the Deutsche Forschungsgemeinschaft (project B2). A.M.H. acknowledges support from the UK BBSRC (grant no. BB/N001168/1). E.M. was supported by the Estonian Research Council (grant no. PUT1133).

Author information




M.D. and T.M. conceived and conducted bioinformatics. H.M.M., H.B. and P.A. conceived, performed and analysed the expression studies. H.M.M. and E.M. conducted and analysed gas exchange measurements. M.P.-L. and P.L.R. conceived and conducted the generation of transgenic plants. C.-M.G. and S.C.C. conceived and conducted proteomic analyses. J.H. conceived, conducted and analysed electro-infusion experiments. P.A., P.L.R., H.K., K.A.S.A.-R., T.M., A.M.H. and R.H. designed and conceived the study. M.D., T.M., P.A., A.M.H. and R.H. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Tobias Müller or Alistair M. Hetherington.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes, Supplementary References, legends for Supplementary Videos and Supplementary Figs. 1–9.

Reporting Summary

Supplementary Video 1

Stomatal movement following ABA electro-infusion of the 11,458 and 12,458 mutants.

Supplementary Video 2

Stomatal movement following ABA electro-infusion of wild type and the PYL2::12458 complementation line.

Supplementary Table 1

Table with three sheets.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dittrich, M., Mueller, H.M., Bauer, H. et al. The role of Arabidopsis ABA receptors from the PYR/PYL/RCAR family in stomatal acclimation and closure signal integration. Nat. Plants 5, 1002–1011 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing