Palaeogenomic insights into the origins of French grapevine diversity


The Eurasian grapevine (Vitis vinifera) has long been important for wine production as well as being a food source. Despite being clonally propagated, modern cultivars exhibit great morphological and genetic diversity, with thousands of varieties described in historic and contemporaneous records. Through historical accounts, some varieties can be traced to the Middle Ages, but the genetic relationships between ancient and modern vines remain unknown. We present target-enriched genome-wide sequencing data from 28 archaeological grape seeds dating to the Iron Age, Roman era and medieval period. When compared with domesticated and wild accessions, we found that the archaeological samples were closely related to western European cultivars used for winemaking today. We identified seeds with identical genetic signatures present at different Roman sites, as well as seeds sharing parent–offspring relationships with varieties grown today. Furthermore, we discovered that one seed dated to ~1100 ce was a genetic match to ‘Savagnin Blanc’, providing evidence for 900 years of uninterrupted vegetative propagation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Genetic affinities between archaeological grape seeds and modern V.vinifera accessions.
Fig. 2: Geographical distribution and relationships between the distinct genetic types of archaeological samples.
Fig. 3: Genetic origins of ancient and historic French grapevine varieties.

Data availability

Sequencing data produced in this study are available at the NCBI Sequence Read Archive under the reference PRJNA489970. Genotype data are available in the figshare repository at:


  1. 1.

    Myles, S. et al. Genetic structure and domestication history of the grape. Proc. Natl Acad. Sci. USA 108, 3530–3535 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Olmo, H. P. in Evolution of Crop Plants (eds Smartt, J. & Simmonds, N. W.) 485–490 (Longman Scientific & Technical, 1995).

  3. 3.

    Zohary, D., Hopf, M. & Weiss, E. Domestication of Plants in the Old World: The Origin and Spread of Domesticated Plants in South-west Asia, Europe, and the Mediterranean Basin (Oxford Univ. Press, 2012).

  4. 4.

    McGovern, P. E. Ancient Wine: the Search for the Origins of Viniculture (Princeton Univ. Press, 2003).

  5. 5.

    McGovern, P. et al. Early Neolithic wine of Georgia in the South Caucasus. Proc. Natl Acad. Sci. USA 114, E10309–E10318 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Goldschmidt, E. E. The evolution of fruit tree productivity: a review. Econ. Bot. 67, 51–62 (2013).

    Article  Google Scholar 

  7. 7.

    Hartmann, H. T., Kester, D. E. & Davies, F. T. Plant Propagation: Principles and Practices (Prentice-Hall, 1997).

  8. 8.

    Janick, J. in Plant Breeding Reviews (ed. Janick, J.) 255–321 (John Wiley & Sons, 2010).

  9. 9.

    This, P., Lacombe, T. & Thomas, M. Historical origins and genetic diversity of wine grapes. Trends Genet. 22, 511–519 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    Bouby, L. et al. Bioarchaeological insights into the process of domestication of grapevine (Vitis vinifera L.) during Roman times in southern France. PLoS ONE 8, e63195 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Renfrew, J. M. in Wine: A Scientific Exploration (eds Sandler, M. & Pinder, R.) 56–69 (CRC Press, 2003).

  12. 12.

    McGovern, P. E. et al. Beginning of viniculture in France. Proc. Natl Acad. Sci. USA 110, 10147–10152 (2013).

    CAS  Article  Google Scholar 

  13. 13.

    Bostock, J. & Riley, H. T. The Natural History of Pliny (Taylor and Francis, 1855).

  14. 14.

    Royer, C. in La Vigne et le Vin (ed. La Manufacture et la Cite des Sciences et de l’industrie) 15–25 (Graficas, 1988).

  15. 15.

    Figueiral, I., Bouby, L., Buffat, L., Petitot, H. & Terral, J.-F. Archaeobotany, vine growing and wine producing in Roman southern France: the site of Gasquinoy (Béziers, Hérault). J. Archaeol. Sci. 37, 139–149 (2010).

    Article  Google Scholar 

  16. 16.

    Terral, J.-F. et al. Evolution and history of grapevine (Vitis vinifera) under domestication: new morphometric perspectives to understand seed domestication syndrome and reveal origins of ancient European cultivars. Ann. Bot. 105, 443–455 (2010).

    Article  Google Scholar 

  17. 17.

    Bacilieri, R. et al. Potential of combining morphometry and ancient DNA information to investigate grapevine domestication. Veg. Hist. Archaeobot. 26, 345–356 (2016).

    Article  Google Scholar 

  18. 18.

    Cappellini, E. et al. A multidisciplinary study of archaeological grape seeds. Naturwissenschaften 97, 205–217 (2010).

    CAS  Article  Google Scholar 

  19. 19.

    Manen, J.-F. et al. Microsatellites from archaeological Vitis vinifera seeds allow a tentative assignment of the geographical origin of ancient cultivars. J. Archaeol. Sci. 30, 721–729 (2003).

    Article  Google Scholar 

  20. 20.

    Wales, N. et al. The limits and potential of paleogenomic techniques for reconstructing grapevine domestication. J. Archaeol. Sci. 72, 57–70 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Laucou, V. et al. Extended diversity analysis of cultivated grapevine Vitis vinifera with 10K genome-wide SNPs. PLoS ONE 13, e0192540 (2018).

    Article  Google Scholar 

  22. 22.

    Briggs, A. W. et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc. Natl Acad. Sci. USA 104, 14616–14621 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    Malaspinas, A.-S. et al. bammds: a tool for assessing the ancestry of low-depth whole-genome data using multidimensional scaling (MDS). Bioinformatics 30, 2962–2964 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Zhou, Y., Massonnet, M., Sanjak, J. S., Cantu, D. & Gaut, B. S. Evolutionary genomics of grape (Vitis vinifera ssp. vinifera) domestication. Proc. Natl Acad. Sci. USA 114, 11715–11720 (2017).

    CAS  Article  Google Scholar 

  25. 25.

    Di Genova, A. et al. Whole genome comparison between table and wine grapes reveals a comprehensive catalog of structural variants. BMC Plant Biol. 14, 7 (2014).

    Article  Google Scholar 

  26. 26.

    Cardone, M. F. et al. Inter-varietal structural variation in grapevine genomes. Plant J. 88, 648–661 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).

    CAS  Article  Google Scholar 

  28. 28.

    Jørsboe, E., Hanghøj, K. & Albrechtsen, A. fastNGSadmix: admixture proportions and principal component analysis of a single NGS sample. Bioinformatics 33, 3148–3150 (2017).

    Article  Google Scholar 

  29. 29.

    Manichaikul, A. et al. Robust relationship inference in genome-wide association studies. Bioinformatics 26, 2867–2873 (2010).

    CAS  Article  Google Scholar 

  30. 30.

    Korneliussen, T. S. & Moltke, I. NgsRelate: a software tool for estimating pairwise relatedness from next-generation sequencing data. Bioinformatics 31, 4009–4011 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Bleckmann, A., Alter, S. & Dresselhaus, T. The beginning of a seed: regulatory mechanisms of double fertilization. Front. Plant Sci. 5, 452 (2014).

    Article  Google Scholar 

  32. 32.

    Ebadi, A., Sedgley, M., May, P. & Coombe, B. G. Seed development and abortion in Vitis vinifera L., cv. Chardonnay. Int. J. Plant Sci. 157, 703–712 (1996).

    Article  Google Scholar 

  33. 33.

    Cadot, Y., Miñana-Castelló, M. T. & Chevalier, M. Anatomical, histological, and histochemical changes in grape seeds from Vitis vinifera L. cv Cabernet franc during fruit development. J. Agric. Food Chem. 54, 9206–9215 (2006).

    CAS  Article  Google Scholar 

  34. 34.

    Boursiquot, J. in Le Château-Chalon: un Vin, son Terroir et ses Hommes (eds Berthet-Bondet J. & Roulière-Lambert M.-J.) 46–55 (Mêta Jura, 2013).

  35. 35.

    Lacombe, T. et al. Large-scale parentage analysis in an extended set of grapevine cultivars (Vitis vinifera L.). Theor. Appl. Genet. 126, 401–414 (2013).

    Article  Google Scholar 

  36. 36.

    Regner, R., Stadlhuber, A. & Kaserer, H. Considerations about the evolution of grapevine and the role of Traminer. Acta Hortic. 528, 179–184 (2000).

    Article  Google Scholar 

  37. 37.

    Bowers, J. E., Siret, R., Meredith, C. P., This, P. & Boursiquot, J.-M. A single pair of parents proposed for a group of grapevine varieties in northeastern France. Acta Hortic. 5281, 129–132 (2000).

    Article  Google Scholar 

  38. 38.

    Galet, P. Dictionnaire Encylcopédique des Cépages et de leurs Synonymes (Libre et Solidaire, 2015).

  39. 39.

    Périsset, Z. Histoire de la Vigne et du Vin en Valais: des Origines à nos Jours (Infolio, 2010).

  40. 40.

    Robinson, J., Harding, J. & Vouillamoz, J. Wine Grapes: A Complete Guide to 1,368 Vine Varieties, including their Origins and Flavours (Ecco, 2012).

  41. 41.

    Mascher, M. et al. Genomic analysis of 6,000-year-old cultivated grain illuminates the domestication history of barley. Nat. Genet. 48, 1089–1093 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Ramos-Madrigal, J. et al. Genome sequence of a 5,310-year-old maize cob provides insights into the early stages of maize domestication. Curr. Biol. 26, 3195–3201 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Vallebueno-Estrada, M. et al. The earliest maize from San Marcos Tehuacán is a partial domesticate with genomic evidence of inbreeding. Proc. Natl Acad. Sci. USA 113, 14151–14156 (2016).

    CAS  Article  Google Scholar 

  44. 44.

    Malenica, N. et al. Whole genome amplification and microsatellite genotyping of herbarium DNA revealed the identity of an ancient grapevine cultivar. Naturwissenschaften 98, 763–772 (2011).

    CAS  Article  Google Scholar 

  45. 45.

    Fuller, D. Q. Long and attenuated: comparative trends in the domestication of tree fruits. Veg. Hist. Archaeobot. 27, 165–176 (2018).

    Article  Google Scholar 

  46. 46.

    Wales, N., Andersen, K., Cappellini, E., Ávila-Arcos, M. C. & Gilbert, M. T. P. Optimization of DNA recovery and amplification from non-carbonized archaeobotanical remains. PLoS ONE 9, e86827 (2014).

    Article  Google Scholar 

  47. 47.

    Wales, N. et al. New insights on single-stranded versus double-stranded DNA library preparation for ancient DNA. Biotechniques 59, 368–371 (2015).

    CAS  Article  Google Scholar 

  48. 48.

    Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).

    Article  Google Scholar 

  49. 49.

    Canaguier, A. et al. A new version of the grapevine reference genome assembly (12X.v2) and of its annotation (VCost.v3). Genom. Data 14, 56–62 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Jansen, R. K. et al. Phylogenetic analyses of Vitis (Vitaceae) based on complete chloroplast genome sequences: effects of taxon sampling and phylogenetic methods on resolving relationships among rosids. BMC Evol. Biol. 6, 32 (2006).

    Article  Google Scholar 

  51. 51.

    Goremykin, V. V., Salamini, F., Velasco, R. & Viola, R. Mitochondrial DNA of Vitis vinifera and the issue of rampant horizontal gene transfer. Mol. Biol. Evol. 26, 99–110 (2008).

    Article  Google Scholar 

  52. 52.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  Article  Google Scholar 

  53. 53.

    Schubert, M. et al. Improving ancient DNA read mapping against modern reference genomes. BMC Genomics 13, 178 (2012).

    CAS  Article  Google Scholar 

  54. 54.

    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).

    CAS  Article  Google Scholar 

  55. 55.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    Article  Google Scholar 

  56. 56.

    Vitis International Variety Catalogue (JKI, accessed 7 January 2019);

  57. 57.

    Korneliussen, T. S., Albrechtsen, A. & Nielsen, R. ANGSD: analysis of next generation sequencing data. BMC Bioinformatics 15, 356 (2014).

    Article  Google Scholar 

  58. 58.

    Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4, 7 (2015).

    Article  Google Scholar 

Download references


We thank the Danish National High-throughput Sequencing Centre for assistance in generating the sequencing data. This project was funded by the Danish Council for Independent Research (10–081390) and the Danish National Research Foundation (DNRF94). L.B. and R.B. were supported by the French National Agency of Research (VINICULTURE project—ANR-16-CE27–0013). We thank the following scientific and technical directors and corresponding institutions for providing the archaeological material used in this project as well as contextual information: P. Blanchard (Inrap, site: La Madeleine), E. Verdel (Isère Patrimoine, site: Colletière), H. Pomarèdes (Inrap, sites: Mas de Vignoles XIV and La Lesse-Espagnac), O. Ginouvez (Inrap, site: Terrasses de Montfau), R. Bourgaut (Communauté d’Agglomération du Bassin de Thau, site: Roumèges), P. Flotte (Archéologie Alsace, site: Horbourg-Wihr), M. Compan (Inrap, site: Mont Ferrier), I. Daveau (Inrap, site: Cougourlude) and C. Tardy (Inrap). We are also grateful to the GrapeReSeq consortium for early access to the genotype data. Finally, we thank J. V. Moreno-Mayar, S. Gopalakrishnan, F. G. Vieira, D. Maghradze and A. Schlumbaum for their helpful discussion.

Author information




The project was conceived by N.W., M.T.P.G., R.B. and L.B., and headed by N.W. and M.T.P.G. J.A.S.C., A.K.W.R, R.B. and N.W. designed the experimental enrichment methodology with input from J.M.M.-Z., R.T. and A.-F.A.-B. A.K.W.R. processed the aDNA with input from N.W. J.R.-M., A.K.W.R., R.B. and N.W. designed the analysis strategy. J.R.-M. performed the bioinformatic analysis with assistance from B.P. and T.S.-P. and input from N.W., M.T.P.G. and R.B. J.R.-M., N.W., M.T.P.G., R.B., L.B., T.L. and P.T. interpreted the results. L.B., I.F., C.S. and C.H. curated the archaeological material. J.R.-M., N.W. and M.T.P.G. wrote the manuscript with input from R.B., L.B. and T.L. and the other authors. All authors revised, edited and accepted the manuscript. Primary funding was acquired by M.T.P.G.

Corresponding authors

Correspondence to M. Thomas P. Gilbert or Nathan Wales.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer Review Information: Nature Plants thanks David Caramelli, Elizabeth Zimmer and other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary References, Supplementary Figures 1–13, and Supplementary Tables 1–7.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramos-Madrigal, J., Runge, A.K.W., Bouby, L. et al. Palaeogenomic insights into the origins of French grapevine diversity. Nat. Plants 5, 595–603 (2019).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing