Molecular basis of flowering under natural long-day conditions in Arabidopsis

Abstract

Plants sense light and temperature changes to regulate flowering time. Here, we show that expression of the Arabidopsis florigen gene, FLOWERING LOCUS T (FT), peaks in the morning during spring, a different pattern than we observe in the laboratory. Providing our laboratory growth conditions with a red/far-red light ratio similar to open-field conditions and daily temperature oscillation is sufficient to mimic the FT expression and flowering time in natural long days. Under the adjusted growth conditions, key light signalling components, such as phytochrome A and EARLY FLOWERING 3, play important roles in morning FT expression. These conditions stabilize CONSTANS protein, a major FT activator, in the morning, which is probably a critical mechanism for photoperiodic flowering in nature. Refining the parameters of our standard growth conditions to more precisely mimic plant responses in nature can provide a powerful method for improving our understanding of seasonal response.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The florigen FT gene is induced in the morning in natural LD conditions.
Fig. 2: Adjusting the R/FR ratio to 1 and changing the daily temperature of the laboratory growth conditions are sufficient to recreate the FT profiles and flowering of plants grown in natural LD conditions.
Fig. 3: Morning induction of florigen expression occurs under both natural LD and LD + FR + temp conditions and is a common response in WT accessions.
Fig. 4: phyA and ELF3 are involved in the regulation of morning FT expression in LD + FR + temp conditions.
Fig. 5: CO protein stability was increased under LD + FR + temp conditions during the morning.

Data availability

All data are available in the main text or the Supplementary Materials. The raw sequence data (GSE110605) were deposited in the NCBI Sequence Read Archive. The mass spectrometry proteomics data were deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD010518 and 10.6019/PXD010518.

References

  1. 1.

    Song, Y. H., Shim, J. S., Kinmonth-Schultz, H. A. & Imaizumi, T. Photoperiodic flowering: time measurement mechanisms in leaves. Annu. Rev. Plant Biol. 66, 441–464 (2015).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Mouradov, A., Cremer, F. & Coupland, G. Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14, S111–S130 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Song, Y. H., Ito, S. & Imaizumi, T. Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci. 18, 575–583 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Golembeski, G. S. & Imaizumi, T. Photoperiodic regulation of florigen function in Arabidopsis thaliana. Arabidopsis Book 13, e0178 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Blümel, M., Dally, N. & Jung, C. Flowering time regulation in crops—what did we learn from Arabidopsis? Curr. Opin. Biotechnol. 32, 121–129 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Kubota, A. et al. Co-option of a photoperiodic growth-phase transition system during land plant evolution. Nat. Commun. 5, 3668 (2014).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Mockler, T. et al. Regulation of photoperiodic flowering by Arabidopsis photoreceptors. Proc. Natl Acad. Sci. USA 100, 2140–2145 (2003).

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Ratcliffe D. The Geographical and Ecological Distribution of Arabidopsis and Comments on Physiological Variation (Arabidopsis Information Service, 1965); https://www.arabidopsis.org/ais/1965/ratcl-1965-aagli.html

  9. 9.

    Effmertova E. The Behaviour of “Summer Annual”, “Mixed”, and “Winter Annual” Natural Populations as Compared with Early and Late Races in Field Conditions (Arabidopsis Information Service, 1967); https://www.arabidopsis.org/ais/1967/effme-1967-aagph.html

  10. 10.

    Thompson, L. The spatiotemporal effects of nitrogen and litter on the population dynamics of Arabidopsis thaliana. J. Ecol. 82, 63–68 (1994).

    Article  Google Scholar 

  11. 11.

    Donohue, K. Germination timing influences natural selection on life-history characters in Arabidopsis thaliana. Ecology 83, 1006–1016 (2002).

    Article  Google Scholar 

  12. 12.

    Griffith, C., Kim, E. & Donohue, K. Life-history variation and adaptation in the historically mobile plant Arabidopsis thaliana (Brassicaceae) in North America. Am. J. Bot. 91, 837–849 (2004).

    Article  PubMed  Google Scholar 

  13. 13.

    Wilczek, A. M. et al. Effects of genetic perturbation on seasonal life history plasticity. Science 323, 930–934 (2009).

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Picó, F. X. Demographic fate of Arabidopsis thaliana cohorts of autumn- and spring-germinated plants along an altitudinal gradient. J. Ecol. 100, 1009–1018 (2012).

    Article  Google Scholar 

  15. 15.

    Chiang, G. C. K. et al. Pleiotropy in the wild: the dormancy gene DOG1 exerts cascading control on life cycles. Evolution 67, 883–893 (2013).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Bieniawska, Z. et al. Disruption of the Arabidopsis circadian clock is responsible for extensive variation in the cold-responsive transcriptome. Plant Physiol. 147, 263–279 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Imaizumi, T., Tran, H. G., Swartz, T. E., Briggs, W. R. & Kay, S. A. FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302–306 (2003).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Imaizumi, T., Schultz, T. F., Harmon, F. G., Ho, L. A. & Kay, S. A. FKF1 F-box protein mediates cyclic degradation of a repressor of CONSTANS in Arabidopsis. Science 309, 293–297 (2005).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Kinmonth-Schultz, H. A. et al. Cool night-time temperatures induce the expression of CONSTANS and FLOWERING LOCUS T to regulate flowering in Arabidopsis. New Phytol. 211, 208–224 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Yamaguchi, A., Kobayashi, Y., Goto, K., Abe, M. & Araki, T. TWIN SISTER OF FT (TSF) acts as a floral pathway integrator redundantly with FT. Plant Cell Physiol. 46, 1175–1189 (2005).

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Krzymuski, M. et al. The dynamics of FLOWERING LOCUS T expression encodes long-day information. Plant J. 83, 952–961 (2015).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Mizoguchi, T. et al. Distinct roles of GIGANTEA in promoting flowering and regulating circadian rhythms in Arabidopsis. Plant Cell 17, 2255–2270 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Amasino, R. Seasonal and developmental timing of flowering. Plant J. 61, 1001–1013 (2010).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Holmes, M. G. & Smith, H. The function of phytochrome in plants growing in the natural environment. Nature 254, 512–514 (1975).

    CAS  Article  Google Scholar 

  25. 25.

    Wollenberg, A. C., Strasser, B., Cerdan, P. D. & Amasino, R. M. Acceleration of flowering during shade avoidance in Arabidopsis alters the balance between FLOWERING LOCUS C-mediated repression and photoperiodic induction of flowering. Plant Physiol. 148, 1681–1694 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Kim, S. Y., Yu, X. & Michaels, S. D. Regulation of CONSTANS and FLOWERING LOCUS T expression in response to changing light quality. Plant Physiol. 148, 269–279 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Bouché, F., Lobet, G., Tocquin, P. & Périlleux, C. FLOR-ID: an interactive database of flowering-time gene networks in Arabidopsis thaliana. Nucleic Acids Res. 44, D1167–D1171 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Koornneef, M., Alonso-Blanco, C. & Vreugdenhil, D. Naturally occurring genetic variation in Arabidopsis thaliana. Annu. Rev. Plant Biol. 55, 141–172 (2004).

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Lee, J. H. et al. Regulation of temperature-responsive flowering by MADS-box transcription factor repressors. Science 342, 628–632 (2013).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Pruneda-Paz, J. L. & Kay, S. A. An expanding universe of circadian networks in higher plants. Trends Plant Sci. 15, 259–265 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Reed, J. W., Nagatani, A., Elich, T. D., Fagan, M. & Chory, J. Phytochrome A and phytochrome B have overlapping but distinct functions in Arabidopsis development. Plant Physiol. 104, 1139–1149 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Johnson, E., Bradley, M., Harberd, N. P. & Whitelam, G. C. Photoresponses of light-grown phyA mutants of Arabidopsis (phytochrome A is required for the perception of daylength extensions). Plant Physiol. 105, 141–149 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Genoud, T. et al. FHY1 mediates nuclear import of the light-activated phytochrome A photoreceptor. PLoS Genet. 4, e1000143 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Mockler, T. C., Guo, H., Yang, H., Duong, H. & Lin, C. Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction. Development 126, 2073–2082 (1999).

    CAS  PubMed  Google Scholar 

  35. 35.

    Valverde, F. et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003–1006 (2004).

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Reed, J. W. et al. Independent action of ELF3 and phyB to control hypocotyl elongation and flowering time. Plant Physiol. 122, 1149–1160 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Leivar, P. & Quail, P. H. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci. 16, 19–28 (2011).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Nusinow, D. A. et al. The ELF4–ELF3–LUX complex links the circadian clock to diurnal control of hypocotyl growth. Nature 475, 398–402 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Jang, S. et al. Arabidopsis COP1 shapes the temporal pattern of CO accumulation conferring a photoperiodic flowering response. EMBO J. 27, 1277–1288 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Laubinger, S. et al. Arabidopsis SPA proteins regulate photoperiodic flowering and interact with the floral inducer CONSTANS to regulate its stability. Development 133, 3213–3222 (2006).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Nakamichi, N. et al. Arabidopsis clock-associated pseudo-response regulators PRR9, PRR7 and PRR5 coordinately and positively regulate flowering time through the canonical CONSTANS-dependent photoperiodic pathway. Plant Cell Physiol. 48, 822–832 (2007).

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Park, M. J., Kwon, Y. J., Gil, K. E. & Park, C. M. LATE ELONGATED HYPOCOTYL regulates photoperiodic flowering via the circadian clock in Arabidopsis. BMC Plant Biol. 16, 114 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Lazaro, A., Valverde, F., Pineiro, M. & Jarillo, J. A. The Arabidopsis E3 ubiquitin ligase HOS1 negatively regulates CONSTANS abundance in the photoperiodic control of flowering. Plant Cell 24, 982–999 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Huang, H. et al. Identification of evening complex associated proteins in Arabidopsis by affinity purification and mass spectrometry. Mol. Cell. Proteomics 15, 201–217 (2016).

    CAS  Article  PubMed  Google Scholar 

  45. 45.

    Schwartz, C. J., Lee, J. & Amasino, R. Variation in shade-induced flowering in Arabidopsis thaliana results from FLOWERING LOCUS T allelic variation. PLoS ONE 12, e0187768 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Song, Y. H. et al. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering. Science 336, 1045–1049 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Yu, J. W. et al. COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol. Cell 32, 617–630 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Sheerin, D. J. et al. Light-activated phytochrome A and B interact with members of the SPA family to promote photomorphogenesis in Arabidopsis by reorganizing the COP1/SPA complex. Plant Cell 27, 189–201 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kim, W. Y., Hicks, K. A. & Somers, D. E. Independent roles for EARLY FLOWERING 3 and ZEITLUPE in the control of circadian timing, hypocotyl length, and flowering time. Plant Physiol. 139, 1557–1569 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Lin, M. K. et al. FLOWERING LOCUS T protein may act as the long-distance florigenic signal in the cucurbits. Plant Cell 19, 1488–1506 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Yoo, S. C. et al. Phloem long-distance delivery of FLOWERING LOCUS T (FT) to the apex. Plant J. 75, 456–468 (2013).

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Mitchell, D. E., Gadus, M. V. & Madore, M. A. Patterns of assimilate production and translocation in muskmelon (Cucumis melo L.): I. Diurnal patterns. Plant Physiol. 99, 959–965 (1992).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Savage, J. A., Zwieniecki, M. A. & Holbrook, N. M. Phloem transport velocity varies over time and among vascular bundles during early cucumber seedling development. Plant Physiol. 163, 1409–1418 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Yasunaga, E., Yano, T., Araki, T., Setoyama, S. & Kitano, M. Effect of environmental condition on xylem and phloem transport of developing fruit. IFAC Proc. 46, 297–301 (2013).

    Article  Google Scholar 

  55. 55.

    Shim, J. S., Kubota, A. & Imaizumi, T. Circadian clock and photoperiodic flowering in Arabidopsis: CONSTANS is a hub for signal integration. Plant Physiol. 173, 5–15 (2017).

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Pittendrigh, C. S. & Minis, D. H. The entrainment of circadian oscillations by light and their role as photoperiodic clocks. Am. Nat. 98, 261–294 (1964).

    Article  Google Scholar 

  57. 57.

    Gattermann, R. et al. Golden hamsters are nocturnal in captivity but diurnal in nature. Biol. Lett. 4, 253–255 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Daan, S. et al. Lab mice in the field: unorthodox daily activity and effects of a dysfunctional circadian clock allele. J. Biol. Rhythms 26, 118–129 (2011).

    Article  PubMed  Google Scholar 

  59. 59.

    Vanin, S. et al. Unexpected features of Drosophila circadian behavioural rhythms under natural conditions. Nature 484, 371–375 (2012).

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Montelli, S. et al. period and timeless mRNA splicing profiles under natural conditions in Drosophila melanogaster. J. Biol. Rhythms 30, 217–227 (2015).

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Shimizu, K. K., Kudoh, H. & Kobayashi, M. J. Plant sexual reproduction during climate change: gene function in natura studied by ecological and evolutionary systems biology. Ann. Bot. 108, 777–787 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Kudoh, H. Molecular phenology in plants: in natura systems biology for the comprehensive understanding of seasonal responses under natural environments. New Phytol. 210, 399–412 (2016).

    CAS  Article  PubMed  Google Scholar 

  63. 63.

    Kotake, T., Takada, S., Nakahigashi, K., Ohto, M. & Goto, K. Arabidopsis TERMINAL FLOWER 2 gene encodes a heterochromatin protein 1 homolog and represses both FLOWERING LOCUS T to regulate flowering time and several floral homeotic genes. Plant Cell Physiol. 44, 555–564 (2003).

    CAS  Article  PubMed  Google Scholar 

  64. 64.

    Takada, S. & Goto, K. TERMINAL FLOWER2, an Arabidopsis homolog of HETEROCHROMATIN PROTEIN1, counteracts the activation of FLOWERING LOCUS T by constans in the vascular tissues of leaves to regulate flowering time. Plant Cell 15, 2856–2865 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  65. 65.

    Reed, J. W., Nagpal, P., Poole, D. S., Furuya, M. & Chory, J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5, 147–157 (1993).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Liu, X. L., Covington, M. F., Fankhauser, C., Chory, J. & Wagner, D. R. ELF3 encodes a circadian clock-regulated nuclear protein that functions in an Arabidopsis PHYB signal transduction pathway. Plant Cell 13, 1293–1304 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    McNellis, T. W. et al. Genetic and molecular analysis of an allelic series ofcop1 mutants suggests functional roles for the multiple protein domains. Plant Cell 6, 487–500 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Laubinger, S., Fittinghoff, K. & Hoecker, U. The SPA quartet: a family of WD-repeat proteins with a central role in suppression of photomorphogenesis in Arabidopsis. Plant Cell 16, 2293–2306 (2004).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. 69.

    Leivar, P. et al. Multiple phytochrome-interacting bHLH transcription factors repress premature seedling photomorphogenesis in darkness. Curr. Biol. 18, 1815–1823 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Yanovsky, M. J., Mazzella, M. A., Whitelam, G. C. & Casal, J. J. Resetting of the circadian clock by phytochromes and cryptochromes in Arabidopsis. J. Biol. Rhythms 16, 523–530 (2001).

    CAS  Article  PubMed  Google Scholar 

  71. 71.

    Yakir, E. et al. Posttranslational regulation of CIRCADIAN CLOCK ASSOCIATED1 in the circadian oscillator of Arabidopsis. Plant Physiol. 150, 844–857 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. 72.

    Nakamichi, N., Kita, M., Ito, S., Yamashino, T. & Mizuno, T. PSEUDO-RESPONSE REGULATORS, PRR9, PRR7 and PRR5, together play essential roles close to the circadian clock of Arabidopsis thaliana. Plant Cell Physiol. 46, 686–698 (2005).

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Kubota, A. et al. TCP4-dependent induction of CONSTANS transcription requires GIGANTEA in photoperiodic flowering in Arabidopsis. PLoS Genet. 13, e1006856 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Baudry, A. et al. F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression. Plant Cell 22, 606–622 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  Article  Google Scholar 

  76. 76.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Series B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  77. 77.

    Huang da, W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Article  CAS  Google Scholar 

  78. 78.

    Shinomura, T. et al. Action spectra for phytochrome A- and B-specific photoinduction of seed germination in Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 93, 8129–8133 (1996).

    CAS  Article  PubMed  Google Scholar 

  79. 79.

    Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901–3907 (1987).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank M. Endo, M. Zeidler, X. W. Deng, U. Hoecker, R. Green, S. Harmer, T. Yamashino and J. H. Ahn for providing the mutant seeds, J. Nemhauser for critical reading of the manuscript and J. Milne for technical support. This work was supported by a NIH grant (GM079712) to T.I., NSF grants (IOS-1656076 to T.I. and IOS-1456796 to D.A.N.), Next-Generation BioGreen 21 Program (SSAC, PJ013386, Rural Development Administration, Republic of Korea) to Y.H.S. and T.I., BBSRC award (BB/N012348/1) to A.J.M., JST CREST grant (JPMJCR16O3), MEXT Kakenhi (18H04785) and Swiss National Science Foundation to K.K.S., and NRF grant (NRF-2015R1D1A1A01058948) to Y.H.S. We acknowledge a NSF grant (DBI-0922879) for LTQ-Velos Pro Orbitrap liquid chromatography–tandem mass spectrometry acquisition. A.K. is supported by the JSPS Postdoctoral Fellowships for Research Abroad.

Author information

Affiliations

Authors

Contributions

T.I. conceived the project. Y.H.S., A.K. and T.I. designed the experiments. Y.H.S., A.K., M.S.K., M.F.C., N.L., E.R.T., D.L.C., D.Y.H., R.A., S.K.H., H.H., N.H.N., D.A.N., A.J.M. and T.I. performed the experiments and analyses. Y.H.S., A.K. and T.I. wrote the manuscript with the help of R.A., D.A.N., A.J.M. and K.K.S.

Corresponding authors

Correspondence to Young Hun Song or Takato Imaizumi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs 1–25 and Supplementary Table 2.

Reporting Summary

Supplementary Table 1

A list of genes upregulated outside in late spring 2013 compared to lab LD conditions on ZT4 (logFC>1, FDR<0.05, adjusted p-values for multiple comparisons using Benjamini–Hochberg Procedure)

Supplementary Table 3

Actual p-values obtained by statistical analysis in flowering time experiments

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, Y.H., Kubota, A., Kwon, M.S. et al. Molecular basis of flowering under natural long-day conditions in Arabidopsis. Nature Plants 4, 824–835 (2018). https://doi.org/10.1038/s41477-018-0253-3

Download citation

Further reading

Search

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing