Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Contribution of isopentenyl phosphate to plant terpenoid metabolism

Abstract

Plant genomes encode isopentenyl phosphate kinases (IPKs) that reactivate isopentenyl phosphate (IP) via ATP-dependent phosphorylation, forming the primary metabolite isopentenyl diphosphate (IPP) used generally for isoprenoid/terpenoid biosynthesis. Therefore, the existence of IPKs in plants raises unanswered questions concerning the origin and regulatory roles of IP in plant terpenoid metabolism. Here, we provide genetic and biochemical evidence showing that IP forms during specific dephosphorylation of IPP catalysed by a subset of Nudix superfamily hydrolases. Increasing metabolically available IP by overexpression of a bacterial phosphomevalonate decarboxylase (MPD) in Nicotiana tabacum resulted in significant enhancement in both monoterpene and sesquiterpene production. These results indicate that perturbing IP metabolism results in measurable changes in terpene products derived from both the methylerythritol phosphate (MEP) and mevalonate (MVA) pathways. Moreover, the unpredicted peroxisomal localization of bacterial MPD led us to discover that the step catalysed by phosphomevalonate kinase (PMK) imposes a hidden constraint on flux through the classical MVA pathway. These complementary findings fundamentally alter conventional views of metabolic regulation of terpenoid metabolism in plants and provide new metabolic engineering targets for the production of high-value terpenes in plants.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Terpenoid biosynthetic pathways in plants, and in some archaea and bacteria.
Fig. 2: Substrate recognition by AtNudx1.
Fig. 3: Role of Nudx1 and Nudx3 in vivo.
Fig. 4: Effect of Roseiflexus castenholzii MPD overexpression on terpenoid formation in tobacco.
Fig. 5: Effect of overexpression of AtIPK and AtHMGR1 on terpenoid formation in RcMPD-4 tobacco transgenic line.
Fig. 6: Effect of AtPMK and AtHMGR1 overexpression on terpenoid formation in tobacco leaves.

References

  1. 1.

    Hemmerlin, A., Harwood, J. L. & Bach, T. J. A raison d’être for two distinct pathways in the early steps of plant isoprenoid biosynthesis? Prog. Lipid Res. 51, 95–148 (2012).

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 148, 63–106 (2015).

    PubMed  CAS  Google Scholar 

  3. 3.

    Gershenzon, J. & Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 3, 408–414 (2007).

    Article  PubMed  CAS  Google Scholar 

  4. 4.

    Tippmann, S., Chen, Y., Siewers, V. & Nielsen, J. From flavors and pharmaceuticals to advanced biofuels: Production of isoprenoids in Saccharomyces cerevisiae. Biotechnol. J. 8, 1435–1444 (2013).

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Zerbe, P. & Bohlmann, J. Plant diterpene synthases: Exploring modularity and metabolic diversity for bioengineering. Trends Biotechnol. 33, 419–428 (2015).

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    Vranová, E., Coman, D. & Gruissem, W. Network analysis of the MVA and MEP pathways for isoprenoid synthesis. Annu. Rev. Plant Biol. 64, 665–700 (2013).

    Article  PubMed  CAS  Google Scholar 

  7. 7.

    Hemmerlin, A. Post-translational events and modifications regulating plant enzymes involved in isoprenoid precursor biosynthesis. Plant Sci. 203–204, 41–54 (2013).

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Vickers, C. E., Bongers, M., Liu, Q., Delatte, T. & Bouwmeester, H. Metabolic engineering of volatile isoprenoids in plants and microbes. Plant Cell Environ. 37, 1753–1775 (2014).

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Wu, S. et al. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat. Biotechnol. 24, 1441–1447 (2006).

    Article  PubMed  CAS  Google Scholar 

  10. 10.

    Farhi, M. et al. Generation of the potent anti-malarial drug artemisinin in tobacco. Nat. Biotechnol. 29, 1072–1074 (2011).

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Muñoz-Bertomeu, J., Sales, E., Ros, R., Arrillaga, I. & Segura, J. Up-regulation of an N-terminal truncated 3-hydroxy-3-methylglutaryl CoA reductase enhances production of essential oils and sterols in transgenic Lavandula latifolia. Plant Biotechnol. J. 5, 746–758 (2007).

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Liao, P., Hemmerlin, A., Bach, T. J. & Chye, M.-L. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol. Adv. 34, 697–713 (2016).

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Dellas, N., Thomas, S. T., Manning, G. & Noel, J. P. Discovery of a metabolic alternative to the classical mevalonate pathway. eLife 2, e00672 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Henry, L. K., Gutensohn, M., Thomas, S. T., Noel, J. P. & Dudareva, N. Orthologs of the archaeal isopentenyl phosphate kinase regulate terpenoid production in plants. Proc. Natl Acad. Sci. USA 112, 10050–10055 (2015).

    Article  PubMed  CAS  Google Scholar 

  15. 15.

    VanNice, J. C. et al. Identification in Haloferax volcanii of phosphomevalonate decarboxylase and isopentenyl phosphate kinase as catalysts of the terminal enzyme reactions in an archaeal alternate mevalonate pathway. J. Bacteriol. 196, 1055–1063 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Karačić, Z. et al. A novel plant enzyme with dual activity: an atypical Nudix hydrolase and a dipeptidyl peptidase III. Biol. Chem. 398, 101–112 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  17. 17.

    Kraszewska, E. The plant Nudix hydrolase family. Acta Biochim. Pol. 55, 663–671 (2008).

    PubMed  CAS  Google Scholar 

  18. 18.

    McLennan, A. G. Substrate ambiguity among the nudix hydrolases: biologically significant, evolutionary remnant, or both? Cell. Mol. Life Sci. 70, 373–385 (2013).

    Article  PubMed  CAS  Google Scholar 

  19. 19.

    Ogawa, T. et al. Molecular characterization of organelle-type Nudix hydrolases in Arabidopsis. Plant Physiol. 148, 1412–1424 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Ogawa, T., Ueda, Y., Yoshimura, K. & Shigeoka, S. Comprehensive analysis of cytosolic nudix hydrolases in Arabidopsis thaliana. J. Biol. Chem. 280, 25277–25283 (2005).

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Yoshimura, K., Ogawa, T., Ueda, Y. & Shigeoka, S. AtNUDX1, an 8-oxo-7,8-dihydro-2′-deoxyguanosine 5′-triphosphate pyrophosphohydrolase, is responsible for eliminating oxidized nucleotides in Arabidopsis. Plant Cell Physiol. 48, 1438–1449 (2007).

    Article  PubMed  CAS  Google Scholar 

  22. 22.

    Liu, J. et al. Structural insights into the substrate recognition mechanism of Arabidopsis GPP-bound NUDX1 for noncanonical monoterpene biosynthesis. Molecular Plant 11, 218–221 (2018).

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Svensson, L. M. et al. Crystal structure of human MTH1 and the 8-oxo-dGMP product complex. FEBS Lett. 585, 2617–2621 (2011).

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Nakamura, T. et al. Structural and dynamic features of the MutT protein in the recognition of nucleotides with the mutagenic 8-oxoguanine base. J. Biol. Chem. 285, 444–452 (2010).

    Article  PubMed  CAS  Google Scholar 

  25. 25.

    Magnard, J.-L. et al. Biosynthesis of monoterpene scent compounds in roses. Science 349, 81–83 (2015).

    Article  PubMed  CAS  Google Scholar 

  26. 26.

    Jones, C. G. et al. Sandalwood fragrance biosynthesis involves sesquiterpene synthases of both the terpene synthase (TPS)-a and TPS-b subfamilies, including santalene synthases. J. Biol. Chem. 286, 17445–17454 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Simkin, A. J. et al. Peroxisomal localisation of the final steps of the mevalonic acid pathway in planta. Planta 234, 903–914 (2011).

    Article  PubMed  CAS  Google Scholar 

  28. 28.

    Reumann, S., Chowdhary, G. & Lingner, T. Characterization, prediction and evolution of plant peroxisomal targeting signals type 1 (PTS1s). Biochim. Biophys. Acta Mol. Cell Res. 1863, 790–803 (2016).

    Article  CAS  Google Scholar 

  29. 29.

    Curtis, I. S., Davey, M. R. & Power, J. B. Leaf disk transformation. Methods Mol. Biol. 44, 59–70 (1995).

    PubMed  CAS  Google Scholar 

  30. 30.

    Sparkes, I. A., Runions, J., Kearns, A. & Hawes, C. Rapid, transient expression of fluorescent fusion proteins in tobacco plants and generation of stably transformed plants. Nat. Protoc. 1, 2019–2025 (2006).

    Article  PubMed  CAS  Google Scholar 

  31. 31.

    Nelson, B. K., Cai, X. & Nebenführ, A. A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J. 51, 1126–1136 (2007).

    Article  PubMed  CAS  Google Scholar 

  32. 32.

    Yoo, H. et al. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine:phenylpyruvate aminotransferase. Nat. Commun. 4, 2833 (2013).

  33. 33.

    Powell, H. R., Battye, T. G. G., Kontogiannis, L., Johnson, O. & Leslie, A. G. W. Integrating macromolecular X-ray diffraction data with the graphical user interface iMosflm. Nat. Protoc. 12, 1310–1325 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Evans, P. R. & Murshudov, G. N. How good are my data and what is the resolution? Acta Crystallogr. D 69, 1204–1214 (2013).

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Vagin, A. & Teplyakov, A. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30, 1022–1025 (1997).

    Article  CAS  Google Scholar 

  36. 36.

    Stein, N. et al. CHAINSAW: a program for mutating pdb files used as templates in molecular replacement. J. Appl. Crystallogr. 41, 641–643 (2008).

    Article  CAS  Google Scholar 

  37. 37.

    Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D 60, 2126–2132 (2004).

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Terwilliger, T. C. et al. Iterative model building, structure refinement and density modification with the PHENIX AutoBuildwizard. Acta Crystallogr. D 64, 61–69 (2008).

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Curtis, M. D. & Grossniklaus, U. A Gateway cloning vector set for high-throughput functional analysis of genes in plants. Breakthr. Technol. 133, 462–469 (2003).

    CAS  Google Scholar 

  40. 40.

    Clough, S. J. & Bent, A. F. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735–743 (1998).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the USDA National Institute of Food and Agriculture Predoctoral Grant 2017-67011-26076 to L.K.H. and start-up funds from Purdue University to J.R.W. and S.A.K. This work was also supported by the USDA National Institute of Food and Agriculture Hatch Project number 177845.

Author information

Affiliations

Authors

Contributions

J.P.N. and N.D. conceived the project; L.K.H., S.T.T., J.R.W., S.A.K., J.B., J.P.N. and N.D. designed the experiments; L.K.H., S.T.T., J.R.W., J.H.L. and T.C.D. performed the experiments; L.K.H., S.T.T., J.R.W., J.H.L., T.C.D., S.A.K., J.B., J.P.N. and N.D. analysed the data; L.K.H., S.T.T., J.R.W., J.P.N. and N.D. wrote the paper. All authors read and edited the manuscript.

Corresponding authors

Correspondence to Joseph P. Noel or Natalia Dudareva.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–10 and Supplementary Tables 1–2.

Reporting Summary

Supplementary Data 1

Primers used in this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Henry, L.K., Thomas, S.T., Widhalm, J.R. et al. Contribution of isopentenyl phosphate to plant terpenoid metabolism. Nature Plants 4, 721–729 (2018). https://doi.org/10.1038/s41477-018-0220-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing