Article | Published:

Gibberellins play an essential role in late embryogenesis of Arabidopsis

Nature Plantsvolume 4pages289298 (2018) | Download Citation

Abstract

The plant hormone gibberellin plays key roles in almost all aspects of plant development, but its detailed function and underlying regulatory mechanism in embryo development are not yet clearly defined. Here, we illustrate an essential role of gibberellin in late embryogenesis of Arabidopsis. Bioactive gibberellins are highly biosynthesized during the late developmental stage of embryos. At that time, deficiency in gibberellin biosynthesis or signalling results in an abnormal embryo phenotype characterized by less-developed cotyledons and shortened embryo axis. In contrast, gibberellin overdose leads to a significantly larger size of mature embryo. We reveal that the gibberellin signalling repressor DELLA interact with LEAFY COTYLEDON1 (LEC1), the key regulator in late embryogenesis. Gibberellin triggers the degradation of DELLAs to relieve their repression of LEC1, thus promoting auxin accumulation to facilitate embryo development. Therefore, we uncover a space/time-specific role of gibberellin in regulating late embryogenesis through the gibberellin–DELLA–LEC1 signalling cascade, providing a novel mechanistic understanding of how phytohormones regulate embryogenesis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

References

  1. 1.

    Goldberg, R. B., de Paiva, G. & Yadegari, R. Plant embryogenesis: Zygote to seed. Science 266, 605–614 (1994).

  2. 2.

    Cheng, Y., Dai, X. & Zhao, Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19, 2430–2439 (2007).

  3. 3.

    Luerssen, H., Kirik, V., Herrmann, P. & Misera, S. FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J. 15, 755–764 (1998).

  4. 4.

    Stone, S. L. et al. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl Acad. Sci. USA 98, 11806–11811 (2001).

  5. 5.

    Lee, H., Fischer, R. L., Goldberg, R. B. & Harada, J. J. Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc. Natl Acad. Sci. USA 100, 2152–2156 (2003).

  6. 6.

    Braybrook, S. A. & Harada, J. J. LECs go crazy in embryo development. Trends Plant Sci. 13, 624–30 (2008).

  7. 7.

    Meinke, D. W., Franzmann, L. H., Nickle, T. C. & Yeung, E. C. Leafy cotyledon mutants of Arabidopsis. Plant Cell 6, 1049–1064 (1994).

  8. 8.

    Kwong, R. W. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15, 5–18 (2002).

  9. 9.

    Lotan, T. et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93, 1195–1205 (1998).

  10. 10.

    Junker, A. et al. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana. Plant J. 71, 427–442 (2012).

  11. 11.

    Sun, T. P. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. Arabidopsis Book 6, e0103 (2008).

  12. 12.

    Hays, D. B., Yeung, E. C. & Pharis, R. P. The role of gibberellins in embryo axis development. J. Exp. Bot. 53, 1747–1751 (2002).

  13. 13.

    Swain, S. M., Reid, J. B. & Kamiya, Y. Gibberellins are required for embryo growth and seed development in pea. Plant J. 12, 1329–1338 (1997).

  14. 14.

    Singh, D. P., Jermakow, A. M. & Swain, S. M. Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14, 3133–3147 (2002).

  15. 15.

    Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59, 225–251 (2008).

  16. 16.

    Murase, K., Hirano, Y., Sun, T. P. & Hakoshima, T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456, 459–463 (2008).

  17. 17.

    Ueguchi-Tanaka, M. et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693–698 (2005).

  18. 18.

    Lee, S. et al. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes. Dev. 16, 646–658 (2002).

  19. 19.

    Peng, J. et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes. Dev. 11, 3194–3205 (1997).

  20. 20.

    Silverstone, A. L., Ciampaglio, C. N. & Sun, T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10, 1555–1566 (1998).

  21. 21.

    Daviere, J. M. & Achard, P. A pivotal role of DELLAs in regulating multiple hormone signals. Mol. Plant 9, 10–20 (2016).

  22. 22.

    Cheng, H. et al. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131, 1055–1064 (2004).

  23. 23.

    Li, D., Guo, Z. & Chen, Y. Direct derivatization and quantitation of ultra-trace gibberellins in sub-milligram fresh plant organs. Mol. Plant 9, 175–177 (2016).

  24. 24.

    Hu, J. et al. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20, 320–336 (2008).

  25. 25.

    Chen, M. et al. Seed fatty acid reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant Cell Environ. 35, 2155–2169 (2012).

  26. 26.

    Silverstone, A. L. et al. Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13, 1555–1566 (2001).

  27. 27.

    Dill, A., Jung, H. S. & Sun, T. P. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc. Natl Acad. Sci. USA 98, 14162–141627 (2001).

  28. 28.

    Huang, M., Hu, Y., Liu, X., Li, Y. & Hou, X. Arabidopsis LEAFY COTYLEDON1 mediates postembryonic development via interacting with PHYTOCHROME-INTERACTING FACTOR4. Plant Cell 27, 3099–3111 (2015).

  29. 29.

    Sugliani, M., Rajjou, L., Clerkx, E. J., Koornneef, M. & Soppe, W. J. Natural modifiers of seed longevity in the Arabidopsis mutants abscisic acid insensitive3-5 (abi3-5) and leafy cotyledon1-3 (lec1-3). New Phytol. 184, 898–908 (2009).

  30. 30.

    White, C. N., Proebsting, W. M., Hedden, P. & Rivin, C. J. Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol. 122, 1081–1088 (2000).

  31. 31.

    Nadeau, C. D. et al. Tissue-specific regulation of gibberellin biosynthesis in developing pea seeds. Plant Physiol. 156, 897–912 (2011).

  32. 32.

    Gomez, M. D., Ventimilla, D., Sacristan, R. & Perez-Amador, M. A. Gibberellins regulate ovule integument development by interfering with the transcription factor ATS. Plant Physiol. 172, 2403–2415 (2016).

  33. 33.

    West, M. A. L. et al. LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6, 1731–1745 (1994).

  34. 34.

    Le, B. H. et al. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc. Natl Acad. Sci. USA 107, 8063–8070 (2010).

  35. 35.

    Nambara, E., Naito, S. & McCourt, P. A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant J. 2, 435–441 (1992).

  36. 36.

    Lim, S. et al. ABA-insensitive3, ABA-insensitive5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25, 4863–4878 (2013).

  37. 37.

    Smit, M. E. & Weijers, D. The role of auxin signaling in early embryo pattern formation. Curr. Opin. Plant Biol. 28, 99–105 (2015).

  38. 38.

    Lee, L. Y. et al. STUNTED mediates the control of cell proliferation by GA in Arabidopsis. Development 139, 1568–1576 (2012).

  39. 39.

    Hou, X. et al. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat. Commun. 5, 4601 (2014).

  40. 40.

    Zuo, J., Niu, Q.-W. & Chua, N.-H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265–273 (2000).

  41. 41.

    Berleth, T. & Jurgens, G. The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118, 575–587 (1993).

  42. 42.

    Liu, X. et al. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nat. Commun. 7, 12768 (2016).

  43. 43.

    Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

  44. 44.

    Bailey, T. L. DREME: Motif discovery in transcription factor ChIP-seq data. Bioinformatics 27, 1653–169 (2011).

  45. 45.

    Sauer, M. & Friml, J. In vitro culture of Arabidopsis embryos within their ovules. Plant J. 40, 835–843 (2004).

Download references

Acknowledgements

We thank T.-P. Sun for providing ga3ox1/4 and ga3ox1/3/4 seeds and Y. Zhao for pYUC4:GUS seeds. This work was supported by grants from the National Natural Science Foundation of China (31670319) and the Natural Science Foundation of Guangdong Province (2017A030313211).

Author information

Affiliations

  1. Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China

    • Yilong Hu
    • , Limeng Zhou
    • , Mingkun Huang
    • , Xuemei He
    • , Yuhua Yang
    • , Xu Liu
    • , Yuge Li
    •  & Xingliang Hou
  2. University of the Chinese Academy of Sciences, Beijing, China

    • Yilong Hu
    • , Limeng Zhou
    • , Xuemei He
    •  & Yuhua Yang

Authors

  1. Search for Yilong Hu in:

  2. Search for Limeng Zhou in:

  3. Search for Mingkun Huang in:

  4. Search for Xuemei He in:

  5. Search for Yuhua Yang in:

  6. Search for Xu Liu in:

  7. Search for Yuge Li in:

  8. Search for Xingliang Hou in:

Contributions

Y.H. and X.L.H. conceived and designed the project. Y.H., L.Z., M.H. and Y.Y. conducted the experiments. Y.H., X.L.H., X.L., Y.L. and X.M.H. analysed the data. Y.H. and X.L.H. wrote the manuscript.

Competing interests

The authors declare no competing interests.

Corresponding author

Correspondence to Xingliang Hou.

Supplementary information

  1. Supplementary Information

    Supplementary Figures 1–15 and Supplementary Table 1.

  2. Reporting Summary

  3. Supplementary Table 2

    List of DELLA–LEC1 coregulated genes identified by RNA-seq.

  4. Supplementary Table 3

    LEC1 binding peaks and associated genes list of ChIP-seq and LEC1–DELLA targeted genes list.

  5. Supplementary Table 4

    List of primers used in this study.

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/s41477-018-0143-8