Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gibberellins play an essential role in late embryogenesis of Arabidopsis

Abstract

The plant hormone gibberellin plays key roles in almost all aspects of plant development, but its detailed function and underlying regulatory mechanism in embryo development are not yet clearly defined. Here, we illustrate an essential role of gibberellin in late embryogenesis of Arabidopsis. Bioactive gibberellins are highly biosynthesized during the late developmental stage of embryos. At that time, deficiency in gibberellin biosynthesis or signalling results in an abnormal embryo phenotype characterized by less-developed cotyledons and shortened embryo axis. In contrast, gibberellin overdose leads to a significantly larger size of mature embryo. We reveal that the gibberellin signalling repressor DELLA interact with LEAFY COTYLEDON1 (LEC1), the key regulator in late embryogenesis. Gibberellin triggers the degradation of DELLAs to relieve their repression of LEC1, thus promoting auxin accumulation to facilitate embryo development. Therefore, we uncover a space/time-specific role of gibberellin in regulating late embryogenesis through the gibberellin–DELLA–LEC1 signalling cascade, providing a novel mechanistic understanding of how phytohormones regulate embryogenesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Gibberellin biosynthesis and physiological function during embryo development.
Fig. 2: DELLAs regulate embryo development.
Fig. 3: RGA physically interacts with LEC1 in vitro and in vivo.
Fig. 4: DELLAs and LEC1 display a shared regulation pattern in embryogenesis.
Fig. 5: DELLAs impair LEC1 binding to target genes without affecting LEC1 protein abundance.
Fig. 6: DELLAs repress transcriptional activity of LEC1.
Fig. 7: A proposed model for gibberellin-regulated late embryogenesis.

References

  1. 1.

    Goldberg, R. B., de Paiva, G. & Yadegari, R. Plant embryogenesis: Zygote to seed. Science 266, 605–614 (1994).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Cheng, Y., Dai, X. & Zhao, Y. Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis. Plant Cell 19, 2430–2439 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Luerssen, H., Kirik, V., Herrmann, P. & Misera, S. FUSCA3 encodes a protein with a conserved VP1/ABI3-like B3 domain which is of functional importance for the regulation of seed maturation in Arabidopsis thaliana. Plant J. 15, 755–764 (1998).

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Stone, S. L. et al. LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc. Natl Acad. Sci. USA 98, 11806–11811 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Lee, H., Fischer, R. L., Goldberg, R. B. & Harada, J. J. Arabidopsis LEAFY COTYLEDON1 represents a functionally specialized subunit of the CCAAT binding transcription factor. Proc. Natl Acad. Sci. USA 100, 2152–2156 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Braybrook, S. A. & Harada, J. J. LECs go crazy in embryo development. Trends Plant Sci. 13, 624–30 (2008).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Meinke, D. W., Franzmann, L. H., Nickle, T. C. & Yeung, E. C. Leafy cotyledon mutants of Arabidopsis. Plant Cell 6, 1049–1064 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Kwong, R. W. LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15, 5–18 (2002).

    Article  Google Scholar 

  9. 9.

    Lotan, T. et al. Arabidopsis LEAFY COTYLEDON1 is sufficient to induce embryo development in vegetative cells. Cell 93, 1195–1205 (1998).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Junker, A. et al. Elongation-related functions of LEAFY COTYLEDON1 during the development of Arabidopsis thaliana. Plant J. 71, 427–442 (2012).

    CAS  PubMed  Google Scholar 

  11. 11.

    Sun, T. P. Gibberellin metabolism, perception and signaling pathways in Arabidopsis. Arabidopsis Book 6, e0103 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Hays, D. B., Yeung, E. C. & Pharis, R. P. The role of gibberellins in embryo axis development. J. Exp. Bot. 53, 1747–1751 (2002).

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Swain, S. M., Reid, J. B. & Kamiya, Y. Gibberellins are required for embryo growth and seed development in pea. Plant J. 12, 1329–1338 (1997).

    CAS  Article  Google Scholar 

  14. 14.

    Singh, D. P., Jermakow, A. M. & Swain, S. M. Gibberellins are required for seed development and pollen tube growth in Arabidopsis. Plant Cell 14, 3133–3147 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59, 225–251 (2008).

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Murase, K., Hirano, Y., Sun, T. P. & Hakoshima, T. Gibberellin-induced DELLA recognition by the gibberellin receptor GID1. Nature 456, 459–463 (2008).

    CAS  Article  PubMed  Google Scholar 

  17. 17.

    Ueguchi-Tanaka, M. et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693–698 (2005).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Lee, S. et al. Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes. Dev. 16, 646–658 (2002).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Peng, J. et al. The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes. Dev. 11, 3194–3205 (1997).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Silverstone, A. L., Ciampaglio, C. N. & Sun, T. The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10, 1555–1566 (1998).

    Article  Google Scholar 

  21. 21.

    Daviere, J. M. & Achard, P. A pivotal role of DELLAs in regulating multiple hormone signals. Mol. Plant 9, 10–20 (2016).

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Cheng, H. et al. Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131, 1055–1064 (2004).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Li, D., Guo, Z. & Chen, Y. Direct derivatization and quantitation of ultra-trace gibberellins in sub-milligram fresh plant organs. Mol. Plant 9, 175–177 (2016).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Hu, J. et al. Potential sites of bioactive gibberellin production during reproductive growth in Arabidopsis. Plant Cell 20, 320–336 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Chen, M. et al. Seed fatty acid reducer acts downstream of gibberellin signalling pathway to lower seed fatty acid storage in Arabidopsis. Plant Cell Environ. 35, 2155–2169 (2012).

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Silverstone, A. L. et al. Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13, 1555–1566 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Dill, A., Jung, H. S. & Sun, T. P. The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc. Natl Acad. Sci. USA 98, 14162–141627 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Huang, M., Hu, Y., Liu, X., Li, Y. & Hou, X. Arabidopsis LEAFY COTYLEDON1 mediates postembryonic development via interacting with PHYTOCHROME-INTERACTING FACTOR4. Plant Cell 27, 3099–3111 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Sugliani, M., Rajjou, L., Clerkx, E. J., Koornneef, M. & Soppe, W. J. Natural modifiers of seed longevity in the Arabidopsis mutants abscisic acid insensitive3-5 (abi3-5) and leafy cotyledon1-3 (lec1-3). New Phytol. 184, 898–908 (2009).

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    White, C. N., Proebsting, W. M., Hedden, P. & Rivin, C. J. Gibberellins and seed development in maize. I. Evidence that gibberellin/abscisic acid balance governs germination versus maturation pathways. Plant Physiol. 122, 1081–1088 (2000).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Nadeau, C. D. et al. Tissue-specific regulation of gibberellin biosynthesis in developing pea seeds. Plant Physiol. 156, 897–912 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Gomez, M. D., Ventimilla, D., Sacristan, R. & Perez-Amador, M. A. Gibberellins regulate ovule integument development by interfering with the transcription factor ATS. Plant Physiol. 172, 2403–2415 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    West, M. A. L. et al. LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6, 1731–1745 (1994).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Le, B. H. et al. Global analysis of gene activity during Arabidopsis seed development and identification of seed-specific transcription factors. Proc. Natl Acad. Sci. USA 107, 8063–8070 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Nambara, E., Naito, S. & McCourt, P. A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant J. 2, 435–441 (1992).

    CAS  Article  Google Scholar 

  36. 36.

    Lim, S. et al. ABA-insensitive3, ABA-insensitive5, and DELLAs interact to activate the expression of SOMNUS and other high-temperature-inducible genes in imbibed seeds in Arabidopsis. Plant Cell 25, 4863–4878 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Smit, M. E. & Weijers, D. The role of auxin signaling in early embryo pattern formation. Curr. Opin. Plant Biol. 28, 99–105 (2015).

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Lee, L. Y. et al. STUNTED mediates the control of cell proliferation by GA in Arabidopsis. Development 139, 1568–1576 (2012).

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Hou, X. et al. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. Nat. Commun. 5, 4601 (2014).

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Zuo, J., Niu, Q.-W. & Chua, N.-H. An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J. 24, 265–273 (2000).

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Berleth, T. & Jurgens, G. The role of the monopteros gene in organising the basal body region of the Arabidopsis embryo. Development 118, 575–587 (1993).

    Google Scholar 

  42. 42.

    Liu, X. et al. The NF-YC-RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. Nat. Commun. 7, 12768 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Zhang, Y. et al. Model-based analysis of ChIP-seq (MACS). Genome Biol. 9, R137 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Bailey, T. L. DREME: Motif discovery in transcription factor ChIP-seq data. Bioinformatics 27, 1653–169 (2011).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Sauer, M. & Friml, J. In vitro culture of Arabidopsis embryos within their ovules. Plant J. 40, 835–843 (2004).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank T.-P. Sun for providing ga3ox1/4 and ga3ox1/3/4 seeds and Y. Zhao for pYUC4:GUS seeds. This work was supported by grants from the National Natural Science Foundation of China (31670319) and the Natural Science Foundation of Guangdong Province (2017A030313211).

Author information

Affiliations

Authors

Contributions

Y.H. and X.L.H. conceived and designed the project. Y.H., L.Z., M.H. and Y.Y. conducted the experiments. Y.H., X.L.H., X.L., Y.L. and X.M.H. analysed the data. Y.H. and X.L.H. wrote the manuscript.

Corresponding author

Correspondence to Xingliang Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–15 and Supplementary Table 1.

Reporting Summary

Supplementary Table 2

List of DELLA–LEC1 coregulated genes identified by RNA-seq.

Supplementary Table 3

LEC1 binding peaks and associated genes list of ChIP-seq and LEC1–DELLA targeted genes list.

Supplementary Table 4

List of primers used in this study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Zhou, L., Huang, M. et al. Gibberellins play an essential role in late embryogenesis of Arabidopsis. Nature Plants 4, 289–298 (2018). https://doi.org/10.1038/s41477-018-0143-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing