Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Precision genome engineering through adenine and cytosine base editing

Abstract

Adenine base editors (ABEs), composed of an engineered deaminase and a catalytically impaired CRISPR–Cas9 variant, are powerful new tools for targeted base editing in cells and organisms. Together with cytosine base editors (CBEs), ABEs enable single-nucleotide conversions cleanly, efficiently and reversibly without double-stranded DNA cleavage, advancing genome editing in a new dimension.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Mechanisms of base editing.

References

  1. 1.

    Kim, H. & Kim, J. S. A guide to genome engineering with programmable nucleases. Nat. Rev. Genet. 15, 321–334 (2014).

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Komor, A. C., Kim, Y. B., Packer, M. S., Zuris, J. A. & Liu, D. R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533, 420–424 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Nishida, K. et al. Targeted nucleotide editing using hybrid prokaryotic and vertebrate adaptive immune systems. Science 353, aaf8729 (2016).

    Article  PubMed  Google Scholar 

  4. 4.

    Zong, Y. et al. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat. Biotechnol. 35, 438–440 (2017).

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Shimatani, Z. et al. Targeted base editing in rice and tomato using a CRISPR-Cas9 cytidine deaminase fusion. Nat. Biotechnol. 35, 441–443 (2017).

    CAS  Article  PubMed  Google Scholar 

  6. 6.

    Kim, K. et al. Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 35, 435–437 (2017).

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Wang, L. et al. Enhanced base editing by co-expression of free uracil DNA glycosylase inhibitor. Cell. Res. 27, 1289–1292 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Komor, A. C. et al. Improved base excision repair inhibition and bacteriophage Mu Gam protein yields C:G-to-T:A base editors with higher efficiency and product purity. Sci. Adv. 3, eaao4774 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Gaudelli, N. M. et al. Programmable base editing of A*T to G*C in genomic DNA without DNA cleavage. Nature 551, 464–471 (2017).

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Kuscu, C. et al. CRISPR-STOP: gene silencing through base-editing-induced nonsense mutations. Nat. Methods 14, 710–712 (2017).

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Billon, P. et al. CRISPR-mediated base editing enables efficient disruption of eukaryotic genes through induction of STOP codons. Mol. Cell. 67, 1068–1079.e4 (2017).

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Vierstra, J. et al. Functional footprinting of regulatory DNA. Nat. Methods 12, 927–930 (2015).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Hess, G. T. et al. Directed evolution using dCas9-targeted somatic hypermutation in mammalian cells. Nat. Methods 13, 1036–1042 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Ma, Y. et al. Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells. Nat. Methods 13, 1029–1035 (2016).

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Lee, H. J., Kim, E. & Kim, J. S. Targeted chromosomal deletions in human cells using zinc finger nucleases. Genome Res. 20, 81–89 (2010).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Lee, H. J., Kweon, J., Kim, E., Kim, S. & Kim, J. S. Targeted chromosomal duplications and inversions in the human genome using zinc finger nucleases. Genome Res. 22, 539–548 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Park, C. Y. et al. Functional correction of large factor VIII gene chromosomal inversions in hemophilia a patient-derived iPSCs using CRISPR-Cas9. Cell. Stem Cell. 17, 213–220 (2015).

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Kim, D. et al. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat. Methods 12, 237–243 (2015).

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Kim, D. et al. Genome-wide target specificities of CRISPR RNA-guided programmable deaminases. Nat. Biotechnol. 35, 475–480 (2017).

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Rees, H. A. et al. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat. Commun. 8, 15790 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Kim, S., Kim, D., Cho, S. W., Kim, J. & Kim, J. S. Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24, 1012–1019 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Woo, J. W. et al. DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33, 1162–1164 (2015).

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Ma, H. et al. Correction of a pathogenic gene mutation in human embryos. Nature 548, 413–419 (2017).

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Kleinstiver, B. P. et al. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature 529, 490–495 (2016).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Kim, Y. B. et al. Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat. Biotechnol. 35, 371–376 (2017).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Institute for Basic Science (IBS-R021-D1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jin-Soo Kim.

Ethics declarations

Competing interests

J.-S.K. is a co-founder of and holds stock in ToolGen, Inc. focused on genome editing.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, JS. Precision genome engineering through adenine and cytosine base editing. Nature Plants 4, 148–151 (2018). https://doi.org/10.1038/s41477-018-0115-z

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing