Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Farming with crops and rocks to address global climate, food and soil security

A Publisher Correction to this article was published on 25 May 2018

This article has been updated


The magnitude of future climate change could be moderated by immediately reducing the amount of CO2 entering the atmosphere as a result of energy generation and by adopting strategies that actively remove CO2 from it. Biogeochemical improvement of soils by adding crushed, fast-reacting silicate rocks to croplands is one such CO2-removal strategy. This approach has the potential to improve crop production, increase protection from pests and diseases, and restore soil fertility and structure. Managed croplands worldwide are already equipped for frequent rock dust additions to soils, making rapid adoption at scale feasible, and the potential benefits could generate financial incentives for widespread adoption in the agricultural sector. However, there are still obstacles to be surmounted. Audited field-scale assessments of the efficacy of CO2 capture are urgently required together with detailed environmental monitoring. A cost-effective way to meet the rock requirements for CO2 removal must be found, possibly involving the recycling of silicate waste materials. Finally, issues of public perception, trust and acceptance must also be addressed.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Summary of the potential effects of weathering of crushed basalt or silicate-rich wastes, such as sugarcane mill ash, applied to croplands.
Fig. 2: Metal and phosphorus concentrations in a range of continental flood basalts (left hand columns) and ultra-basic rocks (right hand columns).
Fig. 3: Net primary production of annual crops and cumulative CO2 emissions by nation.
Fig. 4: Enhanced weathering could address twenty-first century threats to climate, food and soil security.

Change history

  • 25 May 2018

    In the version of this Perspective originally published, ‘acidification’ was incorrectly spelt as ‘adification’ in Fig. 4. This has now been corrected.


  1. 1.

    Rosenzweig, C. et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl Acad. Sci. USA 111, 3268–3273 (2014).

  2. 2.

    IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, New York, 2014).

  3. 3.

    Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. Science 327, 810–818 (2010).

    Article  CAS  Google Scholar 

  4. 4.

    Amundson, J. et al. Soil and human security in the 21st Century. Science 348, 1261071 (2015).

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Paris Agreement: UNFCCC secretariat, available at

  6. 6.

    Hansen, J. et al. Young people’s burden: requirement of negative CO2 emissions. Earth Syst. Dynam 8, 577–616 (2017).

    Article  Google Scholar 

  7. 7.

    Gasser, T. et al. Negative emissions physically needed to keep global warming below 2 °C. Nat. Commun. 6, 7958 (2015).

    Article  PubMed  CAS  Google Scholar 

  8. 8.

    Anderson, K. & Peters, G. The trouble with negative emissions. Science 354, 182–183 (2016).

    Article  PubMed  CAS  Google Scholar 

  9. 9.

    Rockstrom, J. et al. A roadmap for rapid decarbonisation. Science 355, 1269–1271 (2017).

    Article  PubMed  Google Scholar 

  10. 10.

    Lee, H. Turning the focus to solution. Science 350, 1007 (2015).

    Article  PubMed  CAS  Google Scholar 

  11. 11.

    Schuiling, R. D. & Krijgsman, P. Enhanced weathering: an effective and cheap tool to sequester CO2. Clim. Change 74, 349–354 (2006).

    Article  CAS  Google Scholar 

  12. 12.

    Kohler, P., Hartman, J. & Wolf-Gladrow, D. A. Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc. Natl Acad. Sci. USA 107, 20228–20233 (2010).

  13. 13.

    Taylor, L. L. et al. Enhanced weathering strategies for stabilizing climate and averting ocean acidification. Nat. Clim. Change 6, 402–406 (2016).

    Article  CAS  Google Scholar 

  14. 14.

    Ciais, P. et al. in Climate Change 2013: The Physical Science Basis(eds Stocker, T. F. et al.) Ch. 6 (IPCC, Cambridge University Press, Cambridge, 2013).

  15. 15.

    Renforth, P. & Henderson, G. Assessing ocean alkalinity for carbon sequestration. Rev. Geophys. 55, 636–674 (2017).

    Article  Google Scholar 

  16. 16.

    West, T. O. & McBride, A. C. The contribution of agricultural lime to carbon dioxide emissions in the United States: dissolution, transport, and net emissions. Agric. Ecosyst. Environ. 108, 145–154 (2005).

    Article  CAS  Google Scholar 

  17. 17.

    Thorley, R. M. S., Taylor, L. L., Banwart, S. A., Leake, J. R. & Beerling, D. J. The role of forest trees and their mycorrhizal fungi in carbonate rock weathering and its significance for global carbon cycling. Plant Cell Environ. 38, 1947–1961 (2015).

  18. 18.

    Hartmann, J. et al. Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients, and mitigate ocean acidification. Rev. Geophys. 51, 113–149 (2013).

    Article  Google Scholar 

  19. 19.

    Cripps, G., Widdicombe, S., Spicer, J. I. & Findlay, H. S. Biological impacts of enhanced alkalinity in Carcinus maenas. Mar. Pollut. Bull. 71, 190–198 (2013).

    Article  PubMed  CAS  Google Scholar 

  20. 20.

    Albright, R. et al. Reversal of ocean acidification enhances net coral reef calcification. Nature 531, 362–365 (2016).

    Article  PubMed  CAS  Google Scholar 

  21. 21.

    Edwards, D. P. et al. Climate change mitigation: potential benefits and pitfalls of enhanced rock weathering in tropical agriculture. Biol. Lett. 13, 20160715 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2016).

    Article  CAS  Google Scholar 

  23. 23.

    Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Peters, S. C., Blum, J. D., Driscoll, C. T. & Likens, G. E. Dissolution of wollastonite during the experimental manipulation of Hubbard Brook Watershed 1. Biogeochemistry 67, 309–329 (2004).

    Article  CAS  Google Scholar 

  25. 25.

    Shao, S. et al. Long-term responses in soil solution and stream-water chemistry at Hubbard Brook after experimental addition of wollastonite. Environ. Chem. 13, 528–540 (2016).

    CAS  Google Scholar 

  26. 26.

    Hartmann, J. & Kempe, S. What is the maximum potential for CO2 sequestration by “simulated” weathering at the global scale? Naturwissenschaften 95, 1159–1164 (2008).

    Article  PubMed  CAS  Google Scholar 

  27. 27.

    Monfreda, C., Ramankutty, N. & Foley, J. A. Farming the planet: 2. Geographic distribution of crop areas, yields, physiological types, and net primary production in the year 2000. Glob. Biogeochem. Cycles 22, GB1022 (2008).

    Article  CAS  Google Scholar 

  28. 28.

    Fritz, S. et al. Downgrading recent estimates of land area available for biofuel production. Environ. Sci. Technol. 47, 1688–1694 (2013).

    PubMed  CAS  Google Scholar 

  29. 29.

    Kantola, I. B. et al. Potential of global croplands and bioenergy crops for climate change mitigation through deployment for enhanced weathering. Biol. Lett. 13, 20160714 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Renforth, P. The potential of enhanced weathering in the UK. Int. J. Greenh. Gas. Cont. 10, 229–243 (2012).

    Article  CAS  Google Scholar 

  31. 31.

    Hangx, S. J. T. & Spiers, C. J. Coastal spreading of olivine to control atmospheric CO2 concentrations: a critical analysis of viability. Int. J. Greenh. Gas. Cont. 3, 757–767 (2009).

    Article  CAS  Google Scholar 

  32. 32.

    Kohler, P. et al. Geoengineering impact of open ocean dissolution of olivine on atmospheric CO2, surface ocean pH and marine biology. Environ. Res. Lett. 8, 014009 (2013).

    Article  CAS  Google Scholar 

  33. 33.

    Meysman, F. J. R. & Montserrat, F. Negative emissions via enhanced silicate weathering in coastal environments. Biol. Lett. 13, 20160905 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Montserrat, F. et al. Olivine dissolution in seawater: implications for CO2 sequestration through enhanced weathering in coastal environments. Environ. Sci. Technol. 51, 3980–3972 (2017).

    Article  CAS  Google Scholar 

  35. 35.

    ten Berge, H. F. M. et al. Olivine weathering in soil, and its effects on growth and nutrient uptake in ryegrass (Lolium perenne L.): a pot experiment. PLoS ONE 7, e42098 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Renforth, P., von Strandmann, P. A. E. & Henderson, G. M. The dissolution of olivine added to soil: implications for enhanced weathering. Appl. Geochem 61, 109–118 (2015).

    Article  CAS  Google Scholar 

  37. 37.

    Shoji, S., Nanzyo, M., Dahlgren, R. A. (eds). Volcanic Ash Soils: Genesis, Properties and Utilization. (Development in Soil Sciences 21, Elsevier, Amsterdam, 1993).

    Google Scholar 

  38. 38.

    Hinsinger, P. et al. Plant-induced weathering of basaltic rock: experimental evidence. Geochim. Cosmochim. Acta 65, 137–152 (2001).

    Article  CAS  Google Scholar 

  39. 39.

    Brantley, S. L., Kubicki, J. D. & White, A. F. Kinetics of Water-Rock Interaction (Springer, New York, 2008).

  40. 40.

    Beerling, D. J. et al. Defining the ‘negative emission’ capacity of global agriculture deployed for enhanced rock weathering. In American Geophysical Union Fall General Assembly abstract GC21J-04 (American Geophysical Union, 2016).

  41. 41.

    Wollenberg, E. et al. Reducing emissions from agriculture to meet the 2 °C target. Glob. Change Biol. 22, 3859–3864 (2016).

    Article  Google Scholar 

  42. 42.

    Taylor, L. L., Beerling, D. J., Quegan, S. & Banwart, S. A. Simulating carbon capture by enhanced weathering with croplands: an overview of key processes highlighting areas of future model development. Biol. Lett. 13, 20160868 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. 43.

    Moosdorf, N., Renforth, P. & Hartmann, J. Carbon dioxide efficiency of terrestrial weathering. Environ. Sci. Technol. 48, 4809–4816 (2014).

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Harley, A. D. & Gilkes, R. J. Factors influencing the release of plant nutrient elements from silicate rock powders: a geochemical review. Nutr. Cycl. Agroecosyst. 56, 11–26 (2000).

  45. 45.

    Akter, M. & Akagi, T. Effect of fine root contact on plant-induced weathering of basalt. Soil Sci. Plant Nutr. 51, 861–871 (2005).

    Article  CAS  Google Scholar 

  46. 46.

    Akter, M. & Akagi, T. Dependence of plant-inducaed weathering of basalt and andesite on nutrient conditions. Geochem. J. 44, 137–150 (2010).

    Article  CAS  Google Scholar 

  47. 47.

    Burghelea, C. et al. Mineral nutrient mobilization by plants from rock: influence of rock type and arbuscular mycorrhiza. Biogeochemistry 124, 187–203 (2015).

    Article  CAS  Google Scholar 

  48. 48.

    Goulding, K. W. T. Soil acidification and the importance of liming agricultural soils with particular reference to the United Kingdom. Soil Use Manag 32, 390–399 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. 49.

    Reichl, C., Schatz, M. & Zsak, G. World Mining Data Vol. 32 (International Organization Committee for the World Mining Congress, 2017).

  50. 50.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).

    Article  Google Scholar 

  51. 51.

    Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).

    Article  Google Scholar 

  52. 52.

    Hansen, J. et al. Assessing ‘‘dangerous climate change’’: required reduction of carbon emissions to protect young people, future generations and nature. PLoS ONE 8, e81648 (2013).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. 53.

    Renforth, P. et al. Silicate production and availability for mineral carbonation. Environ. Sci. Technol. 45, 2035–2041 (2011).

    Article  PubMed  CAS  Google Scholar 

  54. 54.

    Nunes, J. M. G., Kautzmann, R. M. & Oliveira, C. Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil). J. Clean. Prod. 84, 649–656 (2014).

    Article  CAS  Google Scholar 

  55. 55.

    White, J. W., Holben, F. J. & Jeffries, C. D. The Agricultural Value of Specially Prepared Blast-furnace Slag Report No. 341 (Pennsylvania State College Agricultural Experiment Station, 1937).

  56. 56.

    Yi, H. et al. An overview of utilization of steel slag. Proc. Environ. Sci. 16, 791–801 (2012).

    Article  CAS  Google Scholar 

  57. 57.

    Barry, G. A., Price, A. M. & Lynch, P. J. Some implications of the recycling of sugar industry by-products. Proc. Aust. Soc. Sugar Cane Technol. 20, 52–55 (1998).

    Google Scholar 

  58. 58.

    Kingston, G. A role for silicon, nitrogen and reduced bulk density in yield responses to mill ash and filter mud/ash mixtures. Proc. Aust. Soc. Sugar Cane Technol. 21, 114–121 (1999).

    Google Scholar 

  59. 59.

    Berthelsen, S. et al. Plant cane responses to silicated products in the Mossman, Innisfail and Bundaberg districts. Proc. Aust. Soc. Sugar Cane Technol. 23, 297–303 (2001).

    Google Scholar 

  60. 60.

    Bryan, S. E. & Ernst, R. E. Revised definition of Large Igneous Provinces (LIPs). Earth Sci. Rev. 86, 175–202 (2008).

    Article  Google Scholar 

  61. 61.

    Montgomery, D. R. Soil erosion and agricultural sustainability. Proc. Natl Acad. Sci. USA 104, 13268–13272 (2007).

  62. 62.

    Sanderman, J., Hengl, T. & Fiske, G. J. Soil carbon debt of 12,000 years of human land use. Proc. Natl Acad. Sci. USA 114, 9575–9580 (2017).

  63. 63.

    Agri-environmental Indicator—Soil Erosion (Eurostat, 2015);

  64. 64.

    Gillman, G. P. The effect of crushed basalt scoria on the cation exchange properties of a highly weathered soil. Soil Sci. Soc. Am. J. 44, 465–468 (1980).

    Article  CAS  Google Scholar 

  65. 65.

    Gillman, G. P., Burkett, D. C. & Coventry, R. J. A laboratory study of application of basalt dust to highly weathered soils: effect on soil cation chemistry. Aust. J. Soil Res. 39, 799–811 (2001).

    Article  CAS  Google Scholar 

  66. 66.

    Wright, S. F. & Upadhyaya, A. A survey of soils for aggregate stability and glomalin, a glycoprotein produced by hyphae of arbuscular mycorrhizal fungi. Plant Soil 198, 97–107 (1998).

    Article  CAS  Google Scholar 

  67. 67.

    Baldock, J. A. & Skjemstad, J. O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Organ. Geochem 31, 697–710 (2000).

    Article  CAS  Google Scholar 

  68. 68.

    Lai, R. Beyond Copenhagen: mitigating climate change and achieving food security through soil carbon sequestration. Food Sec. 2, 169–177 (2010).

  69. 69.

    Yu, G. et al. Mineral availability as a key regulator of soil carbon storage. Env. Sci. Tech. 51, 4960–4949 (2017).

    Article  CAS  Google Scholar 

  70. 70.

    Minasny, B. et al. Soil carbon 4 per mille. Geoderma 292, 59–86 (2017).

    Article  Google Scholar 

  71. 71.

    Shewry, P. R., Pellny, T. K. & Lovegrove, A. Is modern wheat bad for our health? Nat. Plants 2, 16097 (2016).

    Article  PubMed  Google Scholar 

  72. 72.

    Guntzer, F., Keller, C. & Meunier, J.-D. Benefits of plant silicon for crops: a review. Agron. Sustain. Dev. 32, 201–213 (2012).

    Article  Google Scholar 

  73. 73.

    Guntzer, F. et al. Long-term removal of wheat straw decreases soil amorphous silica at Broadbalk, Rothamsted. Plant Soil 352, 173–184 (2012).

    Article  CAS  Google Scholar 

  74. 74.

    Klotzbücher, T. et al. Plant-available silicon in paddy soils as a key factor for sustainable rice production in Southeast Asia. Basic Appl. Ecol. 16, 665–673 (2015).

    Article  Google Scholar 

  75. 75.

    Tubana, B. S., Babu, T. & Datnoff, L. E. A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Sci. 181, 393–411 (2016).

    CAS  Google Scholar 

  76. 76.

    Mecfel, J. et al. Effect of silicon fertilizers on silicon accumulation in wheat. J. Plant Nutr. Soil Sci. 170, 769–772 (2007).

    Article  CAS  Google Scholar 

  77. 77.

    Marxen, A. et al. Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant Soil 398, 153–163 (2016).

    Article  CAS  Google Scholar 

  78. 78.

    Vandevenne, F. I. et al. Silicon pools in human impacted soils of temperate zones. Glob. Biogeochem. Cycles 29, 1439–1450 (2015).

    Article  CAS  Google Scholar 

  79. 79.

    Leonardos, O. H., Fyfe, W. S. & Kronberg, B. I. The use of ground rocks in laterite systems: an improvement to the use of conventional soluble fertilizers? Chem. Geol. 60, 361–370 (1987).

    Article  CAS  Google Scholar 

  80. 80.

    Van Straaten, P. Farming with rocks and minerals: challenges and opportunities. Ann. Braz. Acad. Sci. 78, 731–747 (2006).

    Article  Google Scholar 

  81. 81.

    Anda, M., Shamshuddin, J. & Fauziah, C. I. Improving chemical properties of a highly weathered soil using finely ground basalt rocks. Catena 124, 147–161 (2015).

    Article  CAS  Google Scholar 

  82. 82.

    Anda, M., Shamshuddin, J. & Fauziah, C. I. Increasing negative charge and nutrient contents of a highly weathered soil using basalt and rice husk to promote cocoa growth under field conditions. Soil Till. Res. 132, 1–11 (2013).

    Article  Google Scholar 

  83. 83.

    de Villiers, O. D. Soil rejuvenation with crushed basalt in Mauritius. Part I – consistent results of world-wide interest. Int. Sugar J. 63, 363–364 (1961).

    Google Scholar 

  84. 84.

    Albert, R. Untersuchungen über die Verwendbarkeit von Gesteinsabfällen verschiedener Herkunft und Art zur Verbesserung geringwertiger Waldöden. Forstarchiv 14, 237–240 (1938).

    CAS  Google Scholar 

  85. 85.

    Albert, R. Untersuchungen über Tiefenwirkung des Vollumbruches und der Basaltdüngung. Forstarchiv 16, 231–232 (1940).

    CAS  Google Scholar 

  86. 86.

    Basak, B. B. et al. Bio-intervention of naturally occurring silicate minerals for alternative source of potassium: challenges and opportunities. Adv. Agron. 141, 115–145 (2017).

    Article  Google Scholar 

  87. 87.

    Ma, J. F. Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci. Plant Nutr. 50, 11–18 (2004).

    Article  CAS  Google Scholar 

  88. 88.

    Rizwan, M., Meunier, J.-D., Miche, H. & Keller, C. Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J. Hazard. Mat. 209, 326–334 (2012).

    Article  CAS  Google Scholar 

  89. 89.

    Seyfferth, A. L. & Fendorf, S. Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Env. Sci. Technol. 46, 13176–13183 (2012).

    Article  CAS  Google Scholar 

  90. 90.

    Ning, D. et al. Impacts of steel-slag-based silicate fertilizer on soil acidity and silicon availability and metals-immobilization in a paddy soil. PLoS ONE 11, e0168163 (2016).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. 91.

    Bogdan, K. & Schenk, M. K. Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Env. Sci. Technol. 42, 7885–7890 (2008).

    Article  CAS  Google Scholar 

  92. 92.

    Greger, M., Kabir, A. H., Landberg, T., Maity, P. J. & Lindberg, S. Silicate reduces cadmium uptake into cells of wheat. Environ. Poll. 211, 90–97 (2016).

  93. 93.

    Ma, J. F. & Yamaji, N. A cooperative system of silicon transport in rice. Trends Plant Sci. 20, 435–442 (2015).

    Article  PubMed  CAS  Google Scholar 

  94. 94.

    Yamaji, N. et al. Orchestration of three transporters and distinct vascular structures in node for intervascular transfer of silicon in rice. Proc. Natl Acad. Sci. USA 112, 11401–11406 (2015).

  95. 95.

    Van Bockhaven, J., De Vleesschauwer, D. & Höfte, M. Towards establishing broad-spectrum disease resistance in plants: silicon leads the way. J. Exp. Bot. 64, 1281–1291 (2013).

    Article  PubMed  CAS  Google Scholar 

  96. 96.

    Alvarenga, R. et al. Induction of resistance of corn plants to Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae) by application of silicon and gibberellic acid. Bull. Entomol. Res. 107, 527–533 (2017).

    Article  PubMed  CAS  Google Scholar 

  97. 97.

    Yang, L. et al. Silicon amendment to rice plants impairs sucking behaviors and population growth in the phloem feeder Nilaparvata lugens (Hemiptera: Delphacidae). Sci. Rep. 7, 1101 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. 98.

    Swarbrick, P. J. et al. Global patterns of gene expression in rice cultivars undergoing a susceptible or resistant interaction with the parasitic plant Striga hermonthica. New Phytol. 179, 515–529 (2008).

    Article  PubMed  CAS  Google Scholar 

  99. 99.

    Mutuku, J. M. et al. The WRKY45-dependent signaling pathway is required for resistance against Striga hermonthica parasitism. Plant Physiol. 168, 1153–1163 (2015).

    Article  CAS  Google Scholar 

  100. 100.

    Yoder, J. I. & Scholes, J. D. Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr. Opin. Plant Biol. 13, 478–488 (2010).

    Article  PubMed  CAS  Google Scholar 

  101. 101.

    Hamilton, S. K. et al. Evidence for carbon sequestration by agricultural liming. Glob. Biogeochem. Cycles 21, GB2021 (2007).

    Article  CAS  Google Scholar 

  102. 102.

    Gibbons, J. M. et al. Sustainable nutrient management at field, farm and regional level: soil testing, nutrient budgets and the trade-off between lime application and greenhouse gas emissions. Agric. Ecosys. Environ. 188, 48–56 (2014).

    Article  CAS  Google Scholar 

  103. 103.

    Kantola, I. B., Masters, M. D., Wolz, K. J. & DeLucia, E. H. Climate change mitigation through enhanced weathering in bioenergy crops. In American Geophysical Union Fall General Assembly abstract H13B-1358 (American Geophysical Union, 2016).

  104. 104.

    Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2, 410–416 (2012).

    Article  CAS  Google Scholar 

  105. 105.

    Sommer, U. et al. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484, 11–20 (2002).

    Article  Google Scholar 

  106. 106.

    Ragueneau, O., Conley, D. J., Leynaert, A., Longphuirt, S. N. & Slomp, C. P. in The Silicon Cycle: Human Perturbations and Impacts on Aquatic Systems (eds Ittekkot, V. et al.) 163–195 (Island, Washington DC, 2006).

  107. 107.

    Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

  108. 108.

    The Emissions Gap Report 2017 (United Nations Environment Programme, 2017).

  109. 109.

    Wright, M. J., Teagle, D. A. H. & Feetham, P. M. A quantitative evaluation of the public response to climate engineering. Nat. Clim. Change 4, 106–110 (2014).

    Article  CAS  Google Scholar 

  110. 110.

    Pidgeon, N. F. & Spence, E. Perceptions of enhanced weathering as a biological negative emissions option. Biol. Lett. 13, 20170024 (2017).

  111. 111.

    Transforming Our World: The 2030 Agenda for Sustainable Development A/Res/70/1 (United Nations, 2015).

Download references


We acknowledge funding from the Leverhulme Trust through a Leverhulme Research Centre Award (RC-2015-029). L.L.T. was supported by an ERC advanced grant awarded to D.J.B. (CDREG, 322998). R. Thorley is thanked for assistance with Fig. 1. We dedicate this paper to the memory of Professor William (Bill) G. Chaloner FRS (1928–2016), a passionate scientific polymath and extraordinary mentor to generations of researchers.

Author information




D.J.B. wrote the first draft of the manuscript, with contributions from J.R.L., S.P.L. and J.H. All authors provided input on sections and the addition of appropriate references in later drafts. E.K., L.L.T. and M.K. undertook data analysis.

Corresponding author

Correspondence to David J. Beerling.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beerling, D.J., Leake, J.R., Long, S.P. et al. Farming with crops and rocks to address global climate, food and soil security. Nature Plants 4, 138–147 (2018).

Download citation

Further reading


Quick links