Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The goat grass genome’s role in wheat improvement

The recently published reference genome of Aegilops tauschii provides new insights into the originator of the D genome donor of hexaploid wheat. This will be a foundation for exploring the genomic diversity underpinning adaptive traits in wheat, and ultimately advance wheat improvement efforts.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Evolutionary history of bread wheat and the development of synthetic hexaploid wheat for wheat improvement.

T. urartu and T. turgidum, Bon Appetit / Alamy Stock Photo; T. aestivum, Simon Colmer / Alamy Stock Photo; Ae. tauschii, blickwinkel / Alamy Stock Photo; Ae. speltoides, WILDLIFE GmbH / Alamy Stock Photo; Synthetic wheat, Zahid Mahmood.


  1. Zhao, G. et al. Nat. Plants 3, 946–955 (2017).

    Article  CAS  PubMed  Google Scholar 

  2. Luo, M. C. et al. Nature 551, 498–502 (2017).

    CAS  PubMed  Google Scholar 

  3. Jia, J. Z. et al. Nature 496, 91–95 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Makarevitch, I. et al. PLoS Genet. 11, e1004915 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  5. McFadden, E. S. & Sears, E. R. Rec. Genet. Soc. Am. 13, 26–27 (1944).

    Google Scholar 

  6. Börner, A. et al. in Alien Introgression in Wheat (eds Molnár-Láng, M. et al.) 245–271 (Springer International, Cham, 2015).

  7. Ogbonnaya, F. C. et al. Plant Breed. Rev. 37, 35–122 (2013).

    Google Scholar 

  8. Murat, F., Pont, C. & Salse, J. Curr. Plant Biol. 1, 34–39 (2014).

    Article  Google Scholar 

  9. Periyannan, S. et al. Science 341, 786–788 (2013).

    Article  CAS  PubMed  Google Scholar 

  10. Watson, A. et al. Nat. Plants 4, 23–29 (2017).

    Article  Google Scholar 

  11. Rasheed, A., Mujeeb-Kazi, A., Ogbonnaya, F. C., He, Z. H. & Rajaram, S. Ann. Bot. (2017).

  12. Cossani, C. M. & Reynolds, M. P. Crop. Sci. 55, 2719–2735 (2015).

    Article  CAS  Google Scholar 

  13. Crossa, J. et al. Trends Plant Sci. 22, 961–975 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Zhang, Y. et al. Nat. Commun. 7, 12617 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang, Y. et al. Nat. Biotechnol. 32, 947–951 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Ma, X. et al. Mol. Plant 8, 1274–1284 (2015).

    Article  CAS  PubMed  Google Scholar 

  17. Avni, R. et al. Science 357, 93–97 (2017).

    Article  CAS  PubMed  Google Scholar 

Download references


The authors thank R. A. McIntosh, University of Sydney, for the critical review of the manuscript. We acknowledge financial support from Wheat Molecular Design Program (2016YFD0101802) and National Natural Science Foundation of China (31550110212).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Zhonghu He.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rasheed, A., Ogbonnaya, F.C., Lagudah, E. et al. The goat grass genome’s role in wheat improvement. Nature Plants 4, 56–58 (2018).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing