Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Riluzole, a neuroprotective agent, preserves erectile function following bilateral cavernous nerve injury in male rats

Abstract

Neurogenic erectile dysfunction is a highly prevalent complication in men undergoing radical prostatectomy. The underlying mechanisms remain incompletely defined and the effective therapy has been limited. This study aimed to evaluate the protective effect of riluzole and the role of PKC β and excitatory amino acid transporters (EAATs) mediating this effect in a rat model of bilateral cavernous injury (BCNI). A total of 48 male Sprague-Dawley rats were divided into sham, BCNI (at 7, 15 days post-injury) and BCNI treated with riluzole (8 mg/kg/day) groups. Erectile function was measured as maximum intracavernosal pressure (mICP)/mean arterial pressure (MAP) and total ICP/MAP. Changes in protein expressions of phospho (p)-PKC β IIser660 and EAATs were analysed in penis and major pelvic ganglion with western blotting. BCNI decreased erectile function at 7 and 15 days post-injury (mICP/MAP at 4 V: 0.45 ± 0.06 vs 0.84 ± 0.07; 0.34 ± 0.04 vs 0.77 ± 0.04 respectively; p < 0.001) whereas riluzole treatment (for 15 days) preserved erectile function (mICP/MAP at 4 V: 0.62 ± 0.03 vs 0.34 ± 0.04; p < 0.01). The decline in the expression of p-PKC β IIser660 was observed in penis at 7 and 15 days post-injury (p = 0.0003, p = 0.0033), which was prevented by riluzole treatment for 15 days (p = 0.0464). While expressions of EAAT-1 and EAAT-2 decreased in major pelvic ganglion following BCNI (p = 0.0428, p = 0.002), riluzole treatment for 15 days prevented the decrease only in EAAT-2 expression (p = 0.0456). Riluzole improved erectile function via possibly interacting with PKC β II and glutamatergic pathways, as a potential therapeutic candidate for erectile dysfunction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: RIL treatment improved CN electrical stimulation-induced erectile function 7 days after BCNI.
Fig. 2: RIL treatment improved CN electrical stimulation-induced erectile function 15 days after BCNI.
Fig. 3: RIL treatment for 15 days prevented the BCNI-induced decrease in p-PKC β IIser660 in the penile tissue.
Fig. 4: BCNI did not change the p-PKC β IIser660 in MPG.
Fig. 5: RIL treatment did not prevent the BCNI-induced decrease in EAAT-1 in the MPG.
Fig. 6: RIL treatment for 15 days prevented the BCNI-induced decrease in EAAT-2 in the MPG.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Bratu O, Oprea I, Marcu D, Spinu D, Niculae A, Geavlete B, et al. Erectile dysfunction post-radical prostatectomy—a challenge for both patient and physician. J Med Life. 2017;10:13–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Burnett AL, Aus G, Canby-Hagino ED, Cookson MS, D’Amico AV, Dmochowski RR, et al. Erectile function outcome reporting after clinically localized prostate cancer treatment. J Urol. 2007;178:597–601.

    Article  PubMed  Google Scholar 

  3. Milenkovic U, Campbell J, Roussel E, Albersen M. An update on emerging drugs for the treatment of erectile dysfunction. Expert Opin Emerg Drugs. 2018;23:319–30.

    Article  CAS  PubMed  Google Scholar 

  4. Albersen M, Kendirci M, Van der Aa F, Hellstrom WJ, Lue TF, Spees JL. Multipotent stromal cell therapy for cavernous nerve injury-induced erectile dysfunction. J Sex Med. 2012;9:385–403.

    Article  CAS  PubMed  Google Scholar 

  5. Bannowsky A, Schulze H, van der Horst C, Hautmann S, Jünemann KP. Recovery of erectile function after nerve-sparing radical prostatectomy: improvement with nightly low-dose sildenafil. BJU Int. 2008;101:1279–83.

    Article  CAS  PubMed  Google Scholar 

  6. Ryu JK, Suh JK, Burnett AL. Research in pharmacotherapy for erectile dysfunction. Transl Androl Urol. 2017;6:207–15.

    Article  Google Scholar 

  7. Campbell JD, Burnett AL. Neuroprotective and nerve regenerative approaches for treatment of erectile dysfunction after cavernous nerve injury. Int J Mol Sci. 2017;18:1794.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Mizoule J, Meldrum B, Mazadier M, Croucher M, Ollat C, Uzan A, et al. 2-Amino-6-trifluoromethoxy benzothiazole, a possible antagonist of excitatory amino acid neurotransmission—I. Anticonvulsant properties. Neuropharmacology. 1985;24:767–73.

    Article  CAS  PubMed  Google Scholar 

  9. Gourley SL, Espitia JW, Sanacora G, Taylor JR. Antidepressant-like properties of oral riluzole and utility of incentive disengagement models of depression in mice. Psychopharmacology (Berl). 2012;219:805–14.

    Article  CAS  PubMed  Google Scholar 

  10. Sugiyama A, Saitoh A, Iwai T, Takahashi K, Yamada M, Sasaki-Hamada S, et al. Riluzole produces distinct anxiolytic-like effects in rats without the adverse effects associated with benzodiazepines. Neuropharmacology. 2012;62:2489–98.

    Article  CAS  PubMed  Google Scholar 

  11. Bausch AR, Roy G. Volume-sensitive chloride channels blocked by neuroprotective drugs in human glial cells (U-138MG). Glia. 1996;18:73–7.

    Article  CAS  PubMed  Google Scholar 

  12. Huang CS, Song JH, Nagata K, Yeh JZ, Narahashi T. Effects of the neuroprotective agent riluzole on the high voltage-activated calcium channels of rat dorsal root ganglion neurons. J Pharmacol. Exp Ther. 1997;282:1280–90.

    CAS  PubMed  Google Scholar 

  13. Zarate CA, Manji HK. Riluzole in psychiatry: a systematic review of the literature. Expert Opin Drug Metab Toxicol. 2008;4:1223–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fumagalli E, Funicello M, Rauen T, Gobbi M, Mennini T. Riluzole enhances the activity of glutamate transporters GLAST, GLT1 and EAAC1. Eur J Pharmacol. 2008;578:171–6.

    Article  CAS  PubMed  Google Scholar 

  15. Yoo MH, Hyun H-J, Koh J-Y, Yoon YH. Riluzole inhibits VEGF-induced endothelial cell proliferation in vitro and hyperoxia-induced abnormal vessel formation in vivo. Invest Ophthalmol Vis Sci. 2005;46:4780–7.

    Article  PubMed  Google Scholar 

  16. Noh KM, Hwang JY, Shin HC, Koh JY. A novel neuroprotective mechanism of riluzole: direct inhibition of protein kinase C. Neurobiol Dis. 2000;7:375–83.

    Article  CAS  PubMed  Google Scholar 

  17. Miletic V, Bowen KK, Miletic G. Loose ligation of the rat sciatic nerve is accompanied by changes in the subcellular content of protein kinase C beta II and gamma in the spinal dorsal horn. Neurosci Lett. 2000;288:199–202.

    Article  CAS  PubMed  Google Scholar 

  18. Ganel R, Crosson CE. Modulation of human glutamate transporter activity by phorbol ester. J Neurochem. 1998;70:993–1000.

    Article  CAS  PubMed  Google Scholar 

  19. Casado M, Zafra F, Aragón C, Giménez C. Activation of high-affinity uptake of glutamate by phorbol esters in primary glial cell cultures. J Neurochem. 1991;57:1185–90.

    Article  CAS  PubMed  Google Scholar 

  20. Kalandadze A, Wu Y, Robinson MB. Protein kinase C activation decreases cell surface expression of the GLT-1 subtype of glutamate transporter. Requirement of a carboxyl-terminal domain and partial dependence on serine 486. J Biol Chem. 2002;277:45741–50.

    Article  CAS  PubMed  Google Scholar 

  21. González MI, Robinson MB. Protein kinase C-dependent remodeling of glutamate transporter function. Mol Interv. 2004;4:48–58.

    Article  PubMed  Google Scholar 

  22. Wu Y, Satkunendrarajah K, Teng Y, Chow DSL, Buttigieg J, Fehlings MG. Delayed post-injury administration of riluzole is neuroprotective in a preclinical rodent model of cervical spinal cord injury. J Neurotrauma. 2013;30:441–52.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Coderre TJ, Kumar N, Lefebvre CD, Yu JSC. A comparison of the glutamate release inhibition and anti-allodynic effects of gabapentin, lamotrigine, and riluzole in a model of neuropathic pain. J Neurochem. 2007;100:1289–99.

    Article  CAS  PubMed  Google Scholar 

  24. Canguven O, Burnett A. Cavernous nerve injury using rodent animal models. J Sex Med. 2008;5:1776–85.

    Article  PubMed  Google Scholar 

  25. Sezen SF, Hoke A, Burnett AL, Snyder SH. Immunophilin ligand FK506 is neuroprotective for penile innervation. Nat Med. 2001;7:1073–4.

    Article  CAS  PubMed  Google Scholar 

  26. Chew DJ, Carlstedt T, Shortland PJ. The effects of minocycline or riluzole treatment on spinal root avulsion-induced pain in adult rats. J Pain. 2014;15:664–75.

    Article  CAS  PubMed  Google Scholar 

  27. Canguven O, Lagoda G, Sezen SF, Burnett AL. Losartan preserves erectile function after bilateral cavernous nerve injury via antifibrotic mechanisms in male rats. J Urol. 2009;181:2816–22.

    Article  CAS  PubMed  Google Scholar 

  28. Musicki B, Bhunia AK, Karakus S, Burnett AL. S-nitrosylation of NOS pathway mediators in the penis contributes to cavernous nerve injury-induced erectile dysfunction. Int J Impot Res. 2018;30:108–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Medico M, Nicosia A, Grech M, Onesta M, Sessa G, Rampello L, et al. Riluzole restores motor activity in rats with post-traumatic peripheral neuropathy. Neurosci Lett. 2004;358:37–40.

    Article  CAS  PubMed  Google Scholar 

  30. Carbone M, Duty S, Rattray M. Riluzole neuroprotection in a Parkinson’s disease model involves suppression of reactive astrocytosis but not GLT-1 regulation. BMC Neurosci. 2012;13:38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yilmaz-Oral D, Onder A, Kaya-Sezginer E, Oztekin CV, Zor M, Gur S. Restorative effects of red onion (Allium cepa L.) juice on erectile function after-treatment with 5α-reductase inhibitor in rats. Int J Impot Res. 2022;34:269–76.

    Article  CAS  PubMed  Google Scholar 

  32. Sezen SF, Burnett AL. Intracavernosal pressure monitoring in mice: responses to electrical stimulation of the cavernous nerve and to intracavernosal drug administration. J Androl. 2000;21:311–5.

    Article  CAS  PubMed  Google Scholar 

  33. Hannan JL, Kutlu O, Stopak BL, Liu X, Castiglione F, Hedlund P, et al. Valproic acid prevents penile fibrosis and erectile dysfunction in cavernous nerve-injured rats. J Sex Med. 2014;11:1442–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Engin S, Yasar YK, Barut EN, Sezen SF. Improved endothelium-dependent relaxation of thoracic aorta in niclosamide-treated diabetic rats. Cardiovasc Toxicol. 2021;21:563–71.

    Article  CAS  PubMed  Google Scholar 

  35. Abraham-Juárez, MJ. Western blot in maize. Bio-protoc. 2019;101:e3257.

  36. Capogrosso P, Salonia A, Briganti A, Montorsi F. Postprostatectomy erectile dysfunction: a review. World J Mens Health. 2016;34:73–88.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Burnett AL. Strategies to promote recovery of cavernous nerve function after radical prostatectomy. World J Urol. 2003;20:337–42.

    Article  PubMed  Google Scholar 

  38. Emanu JC, Avildsen IK, Nelson CJ. Erectile dysfunction after radical prostatectomy: Prevalence, medical treatments, and psychosocial interventions. Curr Opin Support Palliat Care. 2016;10:102–7.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Gratzke C, Strong TD, Gebska MA, Champion HC, Stief CG, Burnett AL, et al. Activated RhoA/Rho kinase impairs erectile function after cavernous nerve injury in rats. J Urol. 2010;184:2197–204.

    Article  CAS  PubMed  Google Scholar 

  40. Chen YL, Chao TT, Wu YN, Chen MC, Lin YH, Liao CH, et al. NNOS-positive minor-branches of the dorsal penile nerves is associated with erectile function in the bilateral cavernous injury model of rats. Sci Rep. 2018;8:929.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cabaj AM, Slawinska U. Riluzole treatment reduces motoneuron death induced by axotomy in newborn rats. J Neurotrauma. 2012;29:1506–17.

    Article  PubMed  Google Scholar 

  42. Poupon L, Lamoine S, Pereira V, Barriere DA, Lolignier S, Giraudet F, et al. Targeting the TREK-1 potassium channel via riluzole to eliminate the neuropathic and depressive-like effects of oxaliplatin. Neuropharmacology. 2018;140:43–61.

    Article  CAS  PubMed  Google Scholar 

  43. Wiklund P, Ekström PAR, Edbladh M, Tonge D, Edström A. Protein kinase C and mouse sciatic nerve regeneration. Brain Res. 1996;715:145–54.

    Article  CAS  PubMed  Google Scholar 

  44. Mochly-Rosen D. Localization of protein kinases by anchoring proteins: a theme in signal transduction. Science. 1995;268:247–51.

    Article  CAS  PubMed  Google Scholar 

  45. Keranen LM, Dutil EM, Newton AC. Protein kinase C is regulated in vivo by three functionally distinct phosphorylations. Curr Biol. 1995;5:1394–403.

    Article  CAS  PubMed  Google Scholar 

  46. He Y, Wang ZJ. Nociceptor beta II, delta, and epsilon isoforms of PKC differentially mediate paclitaxel-induced spontaneous and evoked pain. J Neurosci. 2015;35:4614–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Eichberg J. Protein kinase C changes in diabetes: is the concept relevant to neuropathy? Int Rev Neurobiol. 2002;50:61–82.

    Article  CAS  PubMed  Google Scholar 

  48. Mehta NN, Sheetz M, Price K, Comiskey L, Amrutia S, Iqbal N, et al. Selective PKC beta inhibition with ruboxistaurin and endothelial function in type-2 diabetes mellitus. Cardiovasc Drugs Ther. 2009;23:17–24.

    Article  CAS  PubMed  Google Scholar 

  49. Casellini CM, Barlow PM, Rice AL, Casey M, Simmons K, Pittenge RG, et al. A 6-month, randomized, double-masked, placebo-controlled study evaluating the effects of the protein kinase C-β inhibitor ruboxistaurin on skin microvascular blood flow and other measures of diabetic peripheral neuropathy. Diabetes Care. 2007;30:896–902.

    Article  CAS  PubMed  Google Scholar 

  50. Payne GA, Bohlen HG, Dincer ÜD, Borbouse L, Tune JD. Periadventitial adipose tissue impairs coronary endothelial function via PKC-β-dependent phosphorylation of nitric oxide synthase. Am J Physiol Heart Circ Physiol. 2009;297:460–5.

    Article  Google Scholar 

  51. Kouroedov A, Eto M, Joch H, Volpe M, Lüscher TF, Cosentino F. Selective inhibition of protein kinase Cβ2 prevents acute effects of high glucose on vascular cell adhesion molecule-1 expression in human endothelial cells. Circulation. 2004;110:91–6.

    Article  CAS  PubMed  Google Scholar 

  52. O’Donovan SM, Sullivan CR, McCullumsmith RE. The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr. 2017;3:32.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Mawrin C, Pap T, Pallas M, Dietzmann K, Behrens-Baumann W, Vorwerk CK. Changes of retinal glutamate transporter GLT-1 mRNA levels following optic nerve damage. Mol Vis. 2003;9:10–3.

    CAS  PubMed  Google Scholar 

  54. Mirzaei V, Manaheji H, Maghsoudi N, Zaringhalam J. Comparison of changes in mRNA expression of spinal glutamate transporters following induction of two neuropathic pain models. Spinal Cord. 2010;48:791–7.

    Article  CAS  PubMed  Google Scholar 

  55. Napier IA, Mohammadi SA, Christie MJ. Glutamate transporter dysfunction associated with nerve injury-induced pain in mice. J Neurophysiol. 2012;107:649–57.

    Article  CAS  PubMed  Google Scholar 

  56. Sung B, Lim G, Mao J. Altered expression and uptake activity of spinal glutamate transporters after nerve injury contribute to the pathogenesis of neuropathic pain in rats. J Neurosci. 2003;23:2899–910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Haugeto O, Ullensvang K, Levy LM, Chaudhry FA, Honoré T, Nielsen M, et al. Brain glutamate transporter proteins form homomultimers. J Biol Chem. 1996;271:27715–22.

    Article  CAS  PubMed  Google Scholar 

  58. Amin B, Avaznia M, Noorani R, Mehri S, Hosseinzadeh H. Up-regulation of glutamate transporter 1 (GLT-1) by treatment with clavulanic acid attenuates allodynia and hyperalgesia in neuropathic rats. Basic Clin Neurosci J. 2018;10:345–54.

    Article  Google Scholar 

  59. Yamamoto S, Ushio S, Egashira N, Kawashiri T, Mitsuyasu S, Higuchi H, et al. Excessive spinal glutamate transmission is involved in oxaliplatin-induced mechanical allodynia: A possibility for riluzole as a prophylactic drug. Sci Rep. 2017;7:9661.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Rothstein JD, Martin LJ, Kuncl RW. Decreased glutamate transport by the brain and spinal cord in amyotrophic lateral sclerosis. N Engl J Med. 1992;26:1464–8.

    Article  Google Scholar 

Download references

Funding

Funding

This study was supported by the Scientific Research Project Coordination Unit of Karadeniz Technical University (Grant Number: TDK-2018-7672) and presented as a part of doctoral thesis.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: ENB, SFS. Methodology: ENB, SFS. Data curation, investigaton: ENB, SE, YKY, SFS. Funding acquisition: SFS. Writing original draft: ENB, SFS. Review & editing: ENB, SE, YKY, SFS.

Corresponding author

Correspondence to Elif Nur Barut.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barut, E.N., Engin, S., Yasar, Y.K. et al. Riluzole, a neuroprotective agent, preserves erectile function following bilateral cavernous nerve injury in male rats. Int J Impot Res 36, 275–282 (2024). https://doi.org/10.1038/s41443-023-00680-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41443-023-00680-x

This article is cited by

Search

Quick links