Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Correspondence on “Computational prediction of protein subdomain stability in MYBPC3 enables clinical risk stratification in hypertrophic cardiomyopathy and enhances variant interpretation” by Thompson et al.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Marian Ali, J. & Braunwald, E. Hypertrophic cardiomyopathy. Circ. Res. 121, 749–770 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Semsarian, C. & Ingles, J. in Hypertrophic Cardiomyopathy (ed Naidu, S. S). Genetics of HCM and role of genetic testing. (Springer-Verlag, London, 2015).

  3. 3.

    Thompson, A. D. et al. Computational prediction of protein subdomain stability in MYBPC3 enables clinical risk stratification in hypertrophic cardiomyopathy and enhances variant interpretation. Genet. Med. https://doi.org/10.1038/s41436-021-01134-9 (2021).

  4. 4.

    Ababou, A. et al. Myosin binding protein C positioned to play a key role in regulation of muscle contraction: structure and interactions of domain C1. J. Mol. Biol. 384, 615–630 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    Smelter, D. F., Lange, W. J. D., Cai, W., Ge, Y. & Ralphe, J. C. The HCM-linked W792R mutation in cardiac myosin-binding protein C reduces C6 FnIII domain stability. Am J Physioll Heart Circ Physiol 314, H1179–H1191 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Pricolo, M. R. et al. Protein thermodynamic destabilization in the assessment of pathogenicity of a variant of uncertain significance in cardiac myosin binding protein C. J. Cardiovasc. Transl. Res. 13, 867–877 (2020).

    Article  Google Scholar 

  7. 7.

    Helms Adam, S. et al. Spatial and functional distribution of MYBPC3 pathogenic variants and clinical outcomes in patients with hypertrophic cardiomyopathy. Circ Genom Precis. Med. 13, 396–405 (2020).

    CAS  Article  Google Scholar 

  8. 8.

    Suay-Corredera, C. et al. Protein haploinsufficiency drivers identify MYBPC3 variants that cause hypertrophic cardiomyopathy. J. Biol. Chem. (2021). (In press).

  9. 9.

    Suay-Corredera, C. et al. Nanomechanical phenotypes in cardiac myosin-binding protein C mutants that cause hypertrophic cardiomyopathy. ACS Nano (2021). (In press).

  10. 10.

    Ito, K. et al. Identification of pathogenic gene mutations in LMNA and MYBPC3 that alter RNA splicing. Proc. Natl. Acad. Sci. U. S. A. 114, 7689–7694 (2017).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jorge Alegre-Cebollada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Suay-Corredera, C., Alegre-Cebollada, J. Correspondence on “Computational prediction of protein subdomain stability in MYBPC3 enables clinical risk stratification in hypertrophic cardiomyopathy and enhances variant interpretation” by Thompson et al.. Genet Med (2021). https://doi.org/10.1038/s41436-021-01235-5

Download citation

Search

Quick links