A genomics approach to male infertility

Abstract

Purpose

Male infertility remains poorly understood at the molecular level. We aimed in this study to investigate the yield of a “genomics first” approach to male infertility.

Methods

Patients with severe oligospermia and nonobstructive azoospermia were investigated using exome sequencing (ES) in parallel with the standard practice of chromosomal analysis.

Results

In 285 patients, 10.5% (n = 30) had evidence of chromosomal aberrations while nearly a quarter (n = 69; 24.2%) had a potential monogenic form of male infertility. The latter ranged from variants in genes previously reported to cause male infertility with or without other phenotypes in humans (24 patients; 8.4%) to those in novel candidate genes reported in this study (37 patients; 12.9%). The 33 candidate genes have biological links to male germ cell development including compatible mouse knockouts, and a few (TERB1 [CCDC79], PIWIL2, MAGEE2, and ZSWIM7) were found to be independently mutated in unrelated patients in our cohort. We also found that male infertility can be the sole or major phenotypic expression of a number of genes that are known to cause multisystemic manifestations in humans (n = 9 patients; 3.1%).

Conclusion

The standard approach to male infertility overlooks the significant contribution of monogenic causes to this important clinical entity.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Irvine DS. Epidemiology and aetiology of male infertility. Hum Reprod. 1998;13 Suppl 1:33–44.

    Article  Google Scholar 

  2. 2.

    Jamsai D, O’bryan MK. Mouse models in male fertility research. Asian J Androl. 2011;13:139.

    Article  Google Scholar 

  3. 3.

    Tuttelmann F, Ruckert C, Ropke A. Disorders of spermatogenesis: perspectives for novel genetic diagnostics after 20 years of unchanged routine. Med Genet. 2018;30:12–20.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Oud MS, Volozonoka L, Smits RM, Vissers LE, Ramos L, Veltman JA. A systematic review and standardized clinical validity assessment of male infertility genes. Hum Reprod. 2019;34:932–41.

    CAS  Article  Google Scholar 

  5. 5.

    Fakhro KA, Elbardisi H, Arafa M, et al. Point-of-care whole-exome sequencing of idiopathic male infertility. Genet Med. 2018;20:1365.

    CAS  Article  Google Scholar 

  6. 6.

    Patel B, Parets S, Akana M, et al. Comprehensive genetic testing for female and male infertility using next-generation sequencing. J Assist Reprod Genet. 2018;35:1489–96.

    Article  Google Scholar 

  7. 7.

    Oud MS, Ramos L, O’Bryan MK, et al. Validation and application of a novel integrated genetic screening method to a cohort of 1,112 men with idiopathic azoospermia or severe oligozoospermia. Hum Mutat. 2017;38:1592–605.

    CAS  Article  Google Scholar 

  8. 8.

    Monies D, Abouelhoda M, Assoum M, et al. Lessons learned from large-scale, first-tier clinical exome sequencing in a highly consanguineous population. Am J Hum Genet. 2019;104:1182–201.

    CAS  Article  Google Scholar 

  9. 9.

    Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405.

    Article  Google Scholar 

  10. 10.

    Strande NT, Riggs ER, Buchanan AH, et al. Evaluating the clinical validity of gene–disease associations: an evidence-based framework developed by the clinical genome resource. Am J Hum Genet. 2017;100:895–906.

    CAS  Article  Google Scholar 

  11. 11.

    Guiraldelli MF, Eyster C, Wilkerson JL, Dresser ME, Pezza RJ. Mouse HFM1/Mer3 is required for crossover formation and complete synapsis of homologous chromosomes during meiosis. PLoS Genet. 2013;9:e1003383.

    CAS  Article  Google Scholar 

  12. 12.

    Faridi R, Rehman AU, Morell RJ, et al. Mutations of SGO2 and CLDN14 collectively cause coincidental Perrault syndrome. Clin Genet. 2017;91:328–32.

    CAS  Article  Google Scholar 

  13. 13.

    Smirin-Yosef P, Zuckerman-Levin N, Tzur S, et al. A biallelic mutation in the homologous recombination repair gene SPIDR is associated with human gonadal dysgenesis. J Clin Endocrinol Metab. 2017;102:681–8.

    Article  Google Scholar 

  14. 14.

    Takashima H, Boerkoel CF, John J, et al. Mutation of TDP1, encoding a topoisomerase I–dependent DNA damage repair enzyme, in spinocerebellar ataxia with axonal neuropathy. Nat Genet. 2002;32:267–72.

    CAS  Article  Google Scholar 

  15. 15.

    Khateb S, Zelinger L, Mizrahi-Meissonnier L, et al. A homozygous nonsense CEP250 mutation combined with a heterozygous nonsense C2orf71 mutation is associated with atypical Usher syndrome. J Med Genet. 2014;51:460–9.

    CAS  Article  Google Scholar 

  16. 16.

    Long J, Huang C, Chen Y, et al. Telomeric TERB1–TRF1 interaction is crucial for male meiosis. Nat Struct Mol Biol. 2017;24:1073.

    CAS  Article  Google Scholar 

  17. 17.

    Kuramochi-Miyagawa S, Kimura T, Ijiri TW, et al. Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development. 2004;131:839–49.

    CAS  Article  Google Scholar 

  18. 18.

    Abreu CM, Prakash R, Romanienko PJ, Roig I, Keeney S, Jasin M. Shu complex SWS1-SWSAP1 promotes early steps in mouse meiotic recombination. Nat Commun. 2018;9:3961.

    Article  Google Scholar 

  19. 19.

    Schimenti KJ, Feuer SK, Griffin LB, et al. AKAP9 is essential for spermatogenesis and sertoli cell maturation in mice. Genetics. 2013;194:447–57.

    CAS  Article  Google Scholar 

  20. 20.

    Ma L, Buchold GM, Greenbaum MP. GASZ is essential for male meiosis and suppression of retrotransposon expression in the male germline. PLoS Genet. 2009;5:e1000635

    Article  Google Scholar 

  21. 21.

    Firat-Karalar EN, Sante J, Elliott S, Stearns T. Proteomic analysis of mammalian sperm cells identifies new components of the centrosome. J Cell Sci. 2014;127:4128–33.

    CAS  Article  Google Scholar 

  22. 22.

    Hall EA, Keighren M, Ford MJ, et al. Acute versus chronic loss of mammalian Azi1/Cep131 results in distinct ciliary phenotypes. PLoS Genet. 2013;9:e1003928.

    Article  Google Scholar 

  23. 23.

    Ruggiu M, Speed R, Taggart M, et al. The mouse Dazla gene encodes a cytoplasmic protein essential for gametogenesis. Nature. 1997;389:73–77.

    CAS  Article  Google Scholar 

  24. 24.

    Tsai-Morris C-H, Sheng Y, Lee E, Lei K-J, Dufau ML. Gonadotropin-regulated testicular RNA helicase (GRTH/Ddx25) is essential for spermatid development and completion of spermatogenesis. Proc Natl Acad Sci U S A. 2004;101:6373–8.

    CAS  Article  Google Scholar 

  25. 25.

    Elliott MR, Zheng S, Park D, et al. Unexpected requirement for ELMO1 in clearance of apoptotic germ cells in vivo. Nature. 2010;467:333.

    CAS  Article  Google Scholar 

  26. 26.

    Antal MC, Krust A, Chambon P, Mark M. Sterility and absence of histopathological defects in nonreproductive organs of a mouse ERβ-null mutant. Proc Natl Acad Sci U S A. 2008;105:2433–8.

    CAS  Article  Google Scholar 

  27. 27.

    Crapster JA, Rack PG, Hellmann ZJ, et al. HIPK4 is essential for murine spermiogenesis. Elife. 2020;9:e50209.

    Article  Google Scholar 

  28. 28.

    Shin Y-H, Choi Y, Erdin SU, et al. Hormad1 mutation disrupts synaptonemal complex formation, recombination, and chromosome segregation in mammalian meiosis. PLoS Genet. 2010;6:e1001190

    Article  Google Scholar 

  29. 29.

    Jeong J, Jin S, Choi H, et al. Characterization of MAGEG2 with testis-specific expression in mice. Asian J Androl. 2017;19:659.

    CAS  Article  Google Scholar 

  30. 30.

    Danshina PV, Geyer CB, Dai Q, et al. Phosphoglycerate kinase 2 (PGK2) is essential for sperm function and male fertility in mice. Biol Reprod. 2010;82:136–45.

    CAS  Article  Google Scholar 

  31. 31.

    Sonnenberg-Riethmacher E, Walter B, Riethmacher D, Gödecke S, Birchmeier C. The c-ros tyrosine kinase receptor controls regionalization and differentiation of epithelial cells in the epididymis. Genes Dev. 1996;10:1184–93.

    CAS  Article  Google Scholar 

  32. 32.

    Wu Q, Song R, Yan W. SPATA3 and SPATA6 interact with KLHL10 and participate in spermatogenesis. Biol Reprod. 2010;83 Suppl 1:177–177.

    Article  Google Scholar 

  33. 33.

    Anderson EL, Baltus AE, Roepers-Gajadien HL, et al. Stra8 and its inducer, retinoic acid, regulate meiotic initiation in both spermatogenesis and oogenesis in mice. Proc Natl Acad Sci U S A. 2008;105:14976–80.

    CAS  Article  Google Scholar 

  34. 34.

    Gonçalves J, Nolasco S, Nascimento R, Fanarraga ML, Zabala JC, Soares H. TBCCD1, a new centrosomal protein, is required for centrosome and Golgi apparatus positioning. EMBO Rep. 2010;11:194–200.

    Article  Google Scholar 

  35. 35.

    Konno A, Ikegami K, Konishi Y, et al. Ttll9−/− mice sperm flagella show shortening of doublet 7, reduction of doublet 5 polyglutamylation and a stall in beating. J Cell Sci. 2016;129:2757–66.

    CAS  Article  Google Scholar 

  36. 36.

    Krausz C, Riera-Escamilla A. Genetics of male infertility. Nature Rev Urol. 2018;15:369.

    CAS  Article  Google Scholar 

  37. 37.

    Shamseldin HE, Al Mogarri I, Alqwaiee MM, et al. An exome-first approach to aid in the diagnosis of primary ciliary dyskinesia. Hum Genet. 2020 May 4; doi:10.1007/s00439-020-02170-2 [Epub ahead of print].

  38. 38.

    Gershoni M, Hauser R, Yogev L, et al. A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. Genet Med. 2017;19:998–1006.

    CAS  Article  Google Scholar 

  39. 39.

    Shamseldin HE, Elfaki M, Alkuraya FS. Exome sequencing reveals a novel Fanconi group defined by XRCC2 mutation. J Med Genet. 2012;49:184–6.

    CAS  Article  Google Scholar 

  40. 40.

    Yang Y, Guo J, Dai L, et al. XRCC2 mutation causes meiotic arrest, azoospermia and infertility. J Med Genet. 2018;55:628–36.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the study families for their enthusiastic participation. We also thank the Sequencing Core Facility at KFSHRC for their technical help.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wafa Qabbaj PhD or Fowzan S. Alkuraya MD.

Ethics declarations

Disclosure

The authors declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Co-first authors: Naif Alhathal, Sateesh Maddirevula, Serdar Coskun

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alhathal, N., Maddirevula, S., Coskun, S. et al. A genomics approach to male infertility. Genet Med (2020). https://doi.org/10.1038/s41436-020-0916-0

Download citation

Keywords

  • azoospermia
  • oligospermia
  • reverse phenotyping
  • Y-chromosome microdeletion