Genetic dissection of spermatogenic arrest through exome analysis: clinical implications for the management of azoospermic men



Azoospermia affects 1% of men and it can be the consequence of spermatogenic maturation arrest (MA). Although the etiology of MA is likely to be of genetic origin, only 13 genes have been reported as recurrent potential causes of MA.


Exome sequencing in 147 selected MA patients (discovery cohort and two validation cohorts).


We found strong evidence for five novel genes likely responsible for MA (ADAD2, TERB1, SHOC1, MSH4, and RAD21L1), for which mouse knockout (KO) models are concordant with the human phenotype. Four of them were validated in the two independent MA cohorts. In addition, nine patients carried pathogenic variants in seven previously reported genes—TEX14, DMRT1, TEX11, SYCE1, MEIOB, MEI1, and STAG3—allowing to upgrade the clinical significance of these genes for diagnostic purposes. Our meiotic studies provide novel insight into the functional consequences of the variants, supporting their pathogenic role.


Our findings contribute substantially to the development of a pre–testicular sperm extraction (TESE) prognostic gene panel. If properly validated, the genetic diagnosis of complete MA prior to surgical interventions is clinically relevant. Wider implications include the understanding of potential genetic links between nonobstructive azoospermia (NOA) and cancer predisposition, and between NOA and premature ovarian failure.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Investigation of patient 10–200 carrying the TERB1 variant.
Fig. 2: Investigation of patient 11–272 carrying the SHOC1 variant.
Fig. 3: Investigation of patient 11–127 carrying the MSH4 variant.
Fig. 4: Investigation of patient 07–359 carrying the RAD21L1 variant.

Change history

  • 07 August 2020

    The original online PDF version of the Article contained figures in monochrome. They now appear in colour in the PDF and HTML versions of the Article.


  1. 1.

    Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15:369–384.

    CAS  Article  Google Scholar 

  2. 2.

    Tournaye H, Krausz C, Oates RD. Novel concepts in the aetiology of male reproductive impairment. Lancet Diabetes Endocrinol. 2017;5:544–553.

    Article  Google Scholar 

  3. 3.

    Oud MS, Volozonoka L, Smits RM, Vissers LELM, Ramos L, Veltman JA. A systematic review and standardized clinical validity assessment of male infertility genes. Hum Reprod. 2019;34:932–941.

    CAS  Article  Google Scholar 

  4. 4.

    van der Bijl N, Ropke A, Biswas U, et al. Mutations in the stromal antigen 3 (STAG3) gene cause male infertility due to meiotic arrest. Hum Reprod. 2019;34:2112–2119.

    PubMed  Google Scholar 

  5. 5.

    Riera-Escamilla A, Enguita-Marruedo A, Moreno-Mendoza D, et al. Sequencing of a “mouse azoospermia” gene panel in azoospermic men: identification of RNF212 and STAG3 mutations as novel genetic causes of meiotic arrest. Hum Reprod. 2019;34:978–988.

    CAS  Article  Google Scholar 

  6. 6.

    Schilit SLP, Menon S, Friedrich C, et al. SYCP2 translocation-mediated dysregulation and frameshift variants cause human male infertility. Am J Hum Genet. 2020;106:41–57.

    CAS  Article  Google Scholar 

  7. 7.

    Yatsenko AN, Georgiadis AP, Ropke A, et al. X-linked TEX11 mutations, meiotic arrest, and azoospermia in infertile men. N Engl J Med. 2015;372:2097–2107.

    CAS  Article  Google Scholar 

  8. 8.

    Krausz C, Hoefsloot L, Simoni M, Tuttelmann F. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013. Andrology. 2014;2:5–19.

    CAS  Article  Google Scholar 

  9. 9.

    Enguita-Marruedo A, Sleddens-Linkels E, Ooms M, et al. Meiotic arrest occurs most frequently at metaphase and is often incomplete in azoospermic men. Fertil Steril. 2019;112:1059–1070.e3.

    Article  Google Scholar 

  10. 10.

    De Muyt A, Vezon D, Gendrot G, Gallois J-L, Stevens R, Grelon M. AtPRD1 is required for meiotic double strand break formation in Arabidopsis thaliana. EMBO J. 2007;26:4126–4137.

    Article  Google Scholar 

  11. 11.

    de Mateo S, Sassone-Corsi P. Regulation of spermatogenesis by small non-coding RNAs: role of the germ granule. Semin Cell Dev Biol. 2014;29:84–92.

    Article  Google Scholar 

  12. 12.

    Wang X, Vukovic L, Koh HR, Schulten K, Myong S. Dynamic profiling of double-stranded RNA binding proteins. Nucleic Acids Res. 2015;43:7566–7576.

    CAS  Article  Google Scholar 

  13. 13.

    Wang Y, Chen Y, Chen J, et al. The meiotic TERB1-TERB2-MAJIN complex tethers telomeres to the nuclear envelope. Nat Commun. 2019;10:564.

    CAS  Article  Google Scholar 

  14. 14.

    Lynn A, Soucek R, Borner GV. ZMM proteins during meiosis: crossover artists at work. Chromosome Res. 2007;15:591–605.

    CAS  Article  Google Scholar 

  15. 15.

    Zhang Q, Shao J, Fan H-Y, Yu C. Evolutionarily-conserved MZIP2 is essential for crossover formation in mammalian meiosis. Commun Biol. 2018;1:147.

    Article  Google Scholar 

  16. 16.

    Herran Y, Gutierrez-Caballero C, Sanchez-Martin M, et al. The cohesin subunit RAD21L functions in meiotic synapsis and exhibits sexual dimorphism in fertility. EMBO J. 2011;30:3091–3105.

    CAS  Article  Google Scholar 

  17. 17.

    Kneitz B, Cohen PE, Avdievich E, et al. MutS homolog 4 localization to meiotic chromosomes is required for chromosome pairing during meiosis in male and female mice. Genes Dev. 2000;14:1085–1097.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Milano CR, Holloway JK, Zhang Y, et al. Mutation of the ATPase domain of MutS homolog-5 (MSH5) reveals a requirement for a functional MutSgamma complex for all crossovers in mammalian meiosis. G3 (Bethesda). 2019;9:1839–1850.

    CAS  Google Scholar 

  19. 19.

    de Vries SS, Baart EB, Dekker M, et al. Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 1999;13:523–531.

    Article  Google Scholar 

  20. 20.

    Gershoni M, Hauser R, Yogev L, et al. A familial study of azoospermic men identifies three novel causative mutations in three new human azoospermia genes. Genet Med. 2017;19:998–1006.

    CAS  Article  Google Scholar 

  21. 21.

    Fakhro KA, Elbardisi H, Arafa M, et al. Point-of-care whole-exome sequencing of idiopathic male infertility. Genet Med. 2018;20:1365–1373.

    CAS  Article  Google Scholar 

  22. 22.

    Fenz Araujo T, Friedrich C, Paiva Grangeiro CH, et al. Sequence analysis of 37 candidate genes for male infertility: challenges in variant assessment and validating genes. Andrology. 2020;8:434–441.

    Article  Google Scholar 

  23. 23.

    Lopes AM, Aston KI, Thompson E, et al. Human spermatogenic failure purges deleterious mutation load from the autosomes and both sex chromosomes, including the gene DMRT1. PLoS Genet. 2013;9:e1003349.

    CAS  Article  Google Scholar 

  24. 24.

    Tewes A-C, Ledig S, Tuttelmann F, Kliesch S, Wieacker P. DMRT1 mutations are rarely associated with male infertility. Fertil Steril. 2014;102:816–820.

    CAS  Article  Google Scholar 

  25. 25.

    Souquet B, Abby E, Herve R, et al. MEIOB targets single-strand DNA and is necessary for meiotic recombination. PLoS Genet. 2013;9:e1003784.

    CAS  Article  Google Scholar 

  26. 26.

    Hays E, Majchrzak N, Daniel V, et al. Spermatogenesis associated 22 is required for DNA repair and synapsis of homologous chromosomes in mouse germ cells. Andrology. 2017;5:299–312.

    CAS  Article  Google Scholar 

  27. 27.

    Gershoni M, Hauser R, Barda S, et al. A new MEIOB mutation is a recurrent cause for azoospermia and testicular meiotic arrest. Hum Reprod. 2019;34:666–671.

    CAS  Article  Google Scholar 

  28. 28.

    Caburet S, Todeschini A-L, Petrillo C, et al. A truncating MEIOB mutation responsible for familial primary ovarian insufficiency abolishes its interaction with its partner SPATA22 and their recruitment to DNA double-strand breaks. EBioMedicine. 2019;42:524–531.

    Article  Google Scholar 

  29. 29.

    Royo H, Polikiewicz G, Mahadevaiah SK, et al. Evidence that meiotic sex chromosome inactivation is essential for male fertility. Curr Biol. 2010;20:2117–2123.

    CAS  Article  Google Scholar 

  30. 30.

    de Vries M, Vosters S, Merkx G, et al. Human male meiotic sex chromosome inactivation. PLoS ONE. 2012;7:e31485.

    Article  Google Scholar 

  31. 31.

    Mulugeta Achame E, Baarends WM, Gribnau J, Grootegoed JA. Evaluating the relationship between spermatogenic silencing of the X chromosome and evolution of the Y chromosome in chimpanzee and human. PLoS ONE. 2010;5:e15598.

    Article  Google Scholar 

  32. 32.

    Carlosama C, Elzaiat M, Patino LC, Mateus HE, Veitia RA, Laissue P. A homozygous donor splice-site mutation in the meiotic gene MSH4 causes primary ovarian insufficiency. Hum Mol Genet. 2017;26:3161–3166.

    CAS  PubMed  Google Scholar 

  33. 33.

    de Vries L, Behar DM, Smirin-Yosef P, Lagovsky I, Tzur S, Basel-Vanagaite L. Exome sequencing reveals SYCE1 mutation associated with autosomal recessive primary ovarian insufficiency. J Clin Endocrinol Metab. 2014;99:E2129–E2132.

    Article  Google Scholar 

  34. 34.

    Nguyen NMP, Ge Z-J, Reddy R, et al. Causative mutations and mechanism of androgenetic hydatidiform moles. Am J Hum Genet. 2018;103:740–751.

    CAS  Article  Google Scholar 

  35. 35.

    Dickinson ME, Flenniken AM, Ji X, et al. High-throughput discovery of novel developmental phenotypes. Nature. 2016;537:508–514.

    CAS  Article  Google Scholar 

  36. 36.

    Eisenberg ML, Li S, Brooks JD, Cullen MR, Baker LC. Increased risk of cancer in infertile men: analysis of U.S. claims data. J Urol. 2015;193:1596–1601.

    Article  Google Scholar 

  37. 37.

    Nagirnaja L, Aston KI, Conrad DF. Genetic intersection of male infertility and cancer. Fertil Steril. 2018;109:20–26.

    Article  Google Scholar 

  38. 38.

    Krausz C, Riera-Escamilla A, Chianese C, et al. From exome analysis in idiopathic azoospermia to the identification of a high-risk subgroup for occult Fanconi anemia. Genet Med. 2019;21:189–194.

    CAS  Article  Google Scholar 

  39. 39.

    LaDuca H, Polley EC, Yussuf A, et al. A clinical guide to hereditary cancer panel testing: evaluation of gene-specific cancer associations and sensitivity of genetic testing criteria in a cohort of 165,000 high-risk patients. Genet Med. 2020;22:407–415.

    CAS  Article  Google Scholar 

  40. 40.

    Kim Y-H, Ohta T, Oh JE, et al. TP53, MSH4, and LATS1 germline mutations in a family with clustering of nervous system tumors. Am J Pathol. 2014;184:2374–2381.

    CAS  Article  Google Scholar 

Download references


The authors thank the patients participating in the study for their important contribution. A special acknowledgment is dedicated to Esperança Martí (President of the Fundació Puigvert). Esther Sleddens-Linkels, Jochen Wistuba, and Jutta Salzig are gratefully acknowledged for their help with testicular histological evaluation. We thank Christian Ruckert, Jochen Seggewiß, and Marius Wöste for their support in bioinformatics and the long-range seq, respectively. The study was supported by Spanish Ministry of Health Instituto Carlos III-FIS (grant number FIS/FEDER-PI14/01250; PI17/01822to C.K. and A.R.-E.), the European Commission, Reproductive Biology Early Research Training (REPROTRAIN, project number 289880, awarded to C.K. and A.R.-E.), the German Research Foundation Clinical Research Unit “Male Germ Cells: from Genes to Function” (DFG CRU326, grants to F.T.), and by the National Institutes of Health (R01HD078641, awarded to D.F.C., L.N., K.I.A., and D.T.C.).

Author information



Corresponding author

Correspondence to Csilla Krausz MD, PhD.

Ethics declarations


The authors declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Krausz, C., Riera-Escamilla, A., Moreno-Mendoza, D. et al. Genetic dissection of spermatogenic arrest through exome analysis: clinical implications for the management of azoospermic men. Genet Med (2020).

Download citation

Key words

  • male infertility
  • azoospermia
  • genetics
  • spermatogenesis
  • meiosis