Pathogenic mosaic variants in congenital hypogonadotropic hypogonadism

Abstract

Purpose

Congenital hypogonadotropic hypogonadism (CHH) is a rare disorder resulting in absent puberty and infertility. The genetic architecture is complex with multiple loci involved, variable expressivity, and incomplete penetrance. The majority of cases are sporadic, consistent with a disease affecting fertility. The current study aims to investigate mosaicism as a genetic mechanism for CHH, focusing on de novo rare variants in CHH genes.

Methods

We evaluated 60 trios for de novo rare sequencing variants (RSV) in known CHH genes using exome sequencing. Potential mosaicism was suspected among RSVs with altered allelic ratios and confirmed using customized ultradeep sequencing (UDS) in multiple tissues.

Results

Among the 60 trios, 10 probands harbored de novo pathogenic variants in CHH genes. Custom UDS demonstrated that three of these de novo variants were in fact postzygotic mosaicism—two in FGFR1 (p.Leu630Pro and p.Gly348Arg), and one in CHD7 (p.Arg2428*). Statistically significant variation across multiple tissues (DNA from blood, buccal, hair follicle, urine) confirmed their mosaic nature.

Conclusions

We identified a significant number of de novo pathogenic variants in CHH of which a notable number (3/10) exhibited mosaicism. This report of postzygotic mosaicism in CHH patients provides valuable information for accurate genetic counseling.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Pathogenic mosaic variants and copy-number variants (CNVs) in congenital hypogonadotropic hypogonadism (CHH) patients.
Fig. 2: Transcription reporter activity of FGFR1 WT and G348R.
Fig. 3: Gene schematic for regions surrounding mosaic variants and copy-number variants (CNVs).

References

  1. 1.

    Bouvattier C, Maione L, Bouligand J, Dode C, Guiochon-Mantel A, Young J. Neonatal gonadotropin therapy in male congenital hypogonadotropic hypogonadism. Nat Rev Endocrinol. 2011;8:172–182.

    Article  Google Scholar 

  2. 2.

    Grumbach MM. A window of opportunity: the diagnosis of gonadotropin deficiency in the male infant. J Clin Endocrinol Metab. 2005;90:3122–3127.

    CAS  Article  Google Scholar 

  3. 3.

    Xu C, Lang-Muritano M, Phan-Hug F, et al. Genetic testing facilitates prepubertal diagnosis of congenital hypogonadotropic hypogonadism. Clin Genet. 2017;92:213–216.

    CAS  Article  Google Scholar 

  4. 4.

    Maione L, Dwyer AA, Francou B, et al. Genetics in endocrinology: genetic counseling for congenital hypogonadotropic hypogonadism and Kallmann syndrome: new challenges in the era of oligogenism and next-generation sequencing. Eur J Endocrinol. 2018;178:R55–R80.

    CAS  Article  Google Scholar 

  5. 5.

    Cangiano B, Swee DS, Quinton R, Bonomi M. Genetics of congenital hypogonadotropic hypogonadism: peculiarities and phenotype of an oligogenic disease. Hum Genet. 2020 Mar 21; https://doi.org/10.1007/s00439-020-02147-1 [Epub ahead of print].

  6. 6.

    Cassatella D, Howard SR, Acierno JS, et al. Congenital hypogonadotropic hypogonadism and constitutional delay of growth and puberty have distinct genetic architectures. Eur J Endocrinol. 2018;178:377–388.

    CAS  Article  Google Scholar 

  7. 7.

    Sykiotis GP, Plummer L, Hughes VA, et al. Oligogenic basis of isolated gonadotropin-releasing hormone deficiency. Proc Natl Acad Sci USA. 2010;107:15140–15144.

    CAS  Article  Google Scholar 

  8. 8.

    Waldstreicher J, Seminara SB, Jameson JL, et al. The genetic and clinical heterogeneity of gonadotropin-releasing hormone deficiency in the human. J Clin Endocrinol Metab. 1996;81:4388–4395.

    CAS  PubMed  Google Scholar 

  9. 9.

    Acuna-Hidalgo R, Veltman JA, Hoischen A. New insights into the generation and role of de novo mutations in health and disease. Genome Biol. 2016;17:241.

    Article  Google Scholar 

  10. 10.

    Acuna-Hidalgo R, Bo T, Kwint MP, et al. Post-zygotic point mutations are an underrecognized source of de novo genomic variation. Am J Hum Genet. 2015;97:67–74.

    CAS  Article  Google Scholar 

  11. 11.

    Wright CF, Prigmore E, Rajan D, et al. Clinically-relevant postzygotic mosaicism in parents and children with developmental disorders in trio exome sequencing data. Nat Commun. 2019;10:2985.

    CAS  Article  Google Scholar 

  12. 12.

    Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E, Spiegel AM. Activating mutations of the stimulatory G protein in the McCune-Albright syndrome. N Engl J Med. 1991;325:1688–1695.

    CAS  Article  Google Scholar 

  13. 13.

    Plant KE, Boye E, Green PM, Vetrie D, Flinter FA. Somatic mosaicism associated with a mild Alport syndrome phenotype. J Med Genet. 2000;37:238–239.

    CAS  Article  Google Scholar 

  14. 14.

    Okajima K, Warman ML, Byrne LC, Kerr DS. Somatic mosaicism in a male with an exon skipping mutation in PDHA1 of the pyruvate dehydrogenase complex results in a milder phenotype. Mol Genet Metab. 2006;87:162–168.

    CAS  Article  Google Scholar 

  15. 15.

    Boehm U, Bouloux PM, Dattani MT, et al. Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism-pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2015;11:547–564.

    Article  Google Scholar 

  16. 16.

    Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–424.

    Article  Google Scholar 

  17. 17.

    McNulty SN, Evenson MJ, Corliss MM, et al. Diagnostic utility of next-generation sequencing for disorders of somatic mosaicism: a five-year cumulative cohort. Am J Hum Genet. 2019;105:734–746.

    CAS  Article  Google Scholar 

  18. 18.

    Santoni FA, Makrythanasis P, Nikolaev S, et al. Simultaneous identification and prioritization of variants in familial, de novo, and somatic genetic disorders with VariantMaster. Genome Res. 2014;24:349–355.

    CAS  Article  Google Scholar 

  19. 19.

    Villanueva C, Jacobson-Dickman E, Xu C, et al. Congenital hypogonadotropic hypogonadism with split hand/foot malformation: a clinical entity with a high frequency of FGFR1 mutations. Genet Med. 2015;17:651–659.

    CAS  Article  Google Scholar 

  20. 20.

    Rahbari R, Wuster A, Lindsay SJ, et al. Timing, rates and spectra of human germline mutation. Nat Genet. 2016;48:126–133.

    CAS  Article  Google Scholar 

  21. 21.

    Balasubramanian R, Choi JH, Francescatto L, et al. Functionally compromised CHD7 alleles in patients with isolated GnRH deficiency. Proc Natl Acad Sci USA. 2014;111:17953–17958.

    CAS  Article  Google Scholar 

  22. 22.

    Nagy E, Maquat LE. A rule for termination-codon position within intron-containing genes: when nonsense affects RNA abundance. Trends Biochem Sci. 1998;23:198–199.

    CAS  Article  Google Scholar 

  23. 23.

    Xu C, Cassatella D, van der Sloot AM, et al. Evaluating CHARGE syndrome in congenital hypogonadotropic hypogonadism patients harboring CHD7 variants. Genet Med. 2018;20:872–881.

    CAS  Article  Google Scholar 

  24. 24.

    Wang F, Zhao S, Xie Y, Yang W, Mo Z. De novo SOX10 nonsense mutation in a patient with Kallmann syndrome, deafness, iris hypopigmentation, and hyperthyroidism. Ann Clin Lab Sci. 2018;48:248–252.

    CAS  PubMed  Google Scholar 

  25. 25.

    Suzuki E, Yatsuga S, Igarashi M, et al. De novo frameshift mutation in fibroblast growth factor 8 in a male patient with gonadotropin deficiency. Horm Res Paediatr. 2014;81:139–144.

    CAS  Article  Google Scholar 

  26. 26.

    Jongmans MC, van Ravenswaaij-Arts CM, Pitteloud N, et al. CHD7 mutations in patients initially diagnosed with Kallmann syndrome-the clinical overlap with CHARGE syndrome. Clin Genet. 2009;75:65–71.

    CAS  Article  Google Scholar 

  27. 27.

    Zenaty D, Bretones P, Lambe C, et al. Paediatric phenotype of Kallmann syndrome due to mutations of fibroblast growth factor receptor 1 (FGFR1). Mol Cell Endocrinol. 2006;254-255:78–83.

    CAS  Article  Google Scholar 

  28. 28.

    Stamou MI, Cox KH, Crowley WF Jr. Discovering genes essential to the hypothalamic regulation of human reproduction using a human disease model: adjusting to life in the “-omics” era. Endocr Rev. 2016;2016:4–22.

    CAS  Article  Google Scholar 

  29. 29.

    Courage C, Jackson CB, Owczarek-Lipska M, et al. Novel synonymous and missense variants in FGFR1 causing Hartsfield syndrome. Am J Med Genet A. 2019;179:2447–2453.

    CAS  Article  Google Scholar 

  30. 30.

    Dhamija R, Kirmani S, Wang X, et al. Novel de novo heterozygous FGFR1 mutation in two siblings with Hartsfield syndrome: a case of gonadal mosaicism. Am J Med Genet A. 2014;164A:2356–2359.

    Article  Google Scholar 

  31. 31.

    Sato N, Ohyama K, Fukami M, Okada M, Ogata T. Kallmann syndrome: somatic and germline mutations of the fibroblast growth factor receptor 1 gene in a mother and the son. J Clin Endocrinol Metab. 2006;91:1415–1418.

    CAS  Article  Google Scholar 

  32. 32.

    Bartels CF, Scacheri C, White L, Scacheri PC, Bale S. Mutations in the CHD7 gene: the experience of a commercial laboratory. Genet Test Mol Biomarkers. 2010;14:881–891.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the patients and family members who participated in this research study by donating their samples, medical history, and time. We also thank Alexia Boizot for her technical and laboratory assistance. This work was supported by the Swiss National Science Foundation Project SNF 310030_173260 (to N.P.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nelly Pitteloud MD.

Ethics declarations

Disclosure

The authors declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Acierno, J.S., Xu, C., Papadakis, G.E. et al. Pathogenic mosaic variants in congenital hypogonadotropic hypogonadism. Genet Med (2020). https://doi.org/10.1038/s41436-020-0896-0

Download citation

Keywords

  • hypogonadotropic hypogonadism
  • postzygotic mosaicism
  • copy-number variation
  • FGFR1
  • CHD7