Phenotypic continuum between Waardenburg syndrome and idiopathic hypogonadotropic hypogonadism in humans with SOX10 variants

Abstract

Purpose

SOX10 variants previously implicated in Waardenburg syndrome (WS) have now been linked to Kallmann syndrome (KS), the anosmic form of idiopathic hypogonadotropic hypogonadism (IHH). We investigated whether SOX10-associated WS and IHH represent elements of a phenotypic continuum within a unifying disorder or if they represent phenotypically distinct allelic disorders.

Methods

Exome sequencing from 1,309 IHH subjects (KS: 632; normosmic idiopathic hypogonadotropic hypogonadism [nIIHH]: 677) were reviewed for SOX10 rare sequence variants (RSVs). The genotypic and phenotypic spectrum of SOX10-related IHH (this study and literature) and SOX10-related WS cases (literature) were reviewed and compared with SOX10-RSV spectrum in gnomAD population.

Results

Thirty-seven SOX10-associated IHH cases were identified as follows: current study: 16 KS; 4 nIHH; literature: 16 KS; 1 nIHH. Twenty-three IHH cases (62%; all KS), had ≥1 known WS-associated feature(s). Moreover, five previously reported SOX10-associated WS cases showed IHH-related features. Four SOX10 missense RSVs showed allelic overlap between IHH-ascertained and WS-ascertained cases. The SOX10-HMG domain showed an enrichment of RSVs in disease states versus gnomAD.

Conclusion

SOX10 variants contribute to both anosmic (KS) and normosmic (nIHH) forms of IHH. IHH and WS represent SOX10-associated developmental defects that lie along a unifying phenotypic continuum. The SOX10-HMG domain is critical for the pathogenesis of SOX10-related human disorders.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Family pedigrees of probands with SOX10 rare sequence variants (RSVs) identified in the Massachusetts General Hospital (MGH) idiopathic hypogonadotropic hypogonadism (IHH) cohort.
Fig. 2: SOX10 protein domains and positions of SOX10 rare sequence variants (RSVs) identified in idiopathic hypogonadotropic hypogonadism (IHH), Waardenburg syndrome (WS), and gnomAD.

Data availability

Data and materials will be made available by the authors individually upon request subject to the data sharing plan and consent provided by the study participants.

References

  1. 1.

    Hormozdiari, F. et al. Widespread allelic heterogeneity in complex traits. Am. J. Hum. Genet. 100, 789–802 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Walsh, C. A. & Engle, E. C. Allelic diversity in human developmental neurogenetics: insights into biology and disease. Neuron. 68, 245–253 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Chaoui, A. et al. Identification and functional analysis of SOX10 missense mutations in different subtypes of Waardenburg syndrome. Hum. Mutat. 32, 1436–1449 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Pingault, V. et al. Loss-of-function mutations in SOX10 cause Kallmann syndrome with deafness. Am. J. Hum. Genet. 92, 707–724 (2013).

    CAS  Article  Google Scholar 

  5. 5.

    Balasubramanian, R. & Crowley, W. F. Jr. Isolated GnRH deficiency: a disease model serving as a unique prism into the systems biology of the GnRH neuronal network. Mol. Cell. Endocrinol. 346, 4–12 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Elmaleh-Berges, M. et al. Spectrum of temporal bone abnormalities in patients with Waardenburg syndrome and SOX10 mutations. AJNR Am. J. Neuroradiol. 34, 1257–1263 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Suzuki, E. et al. Loss-of-function SOX10 mutation in a patient with Kallmann syndrome, hearing loss, and iris hypopigmentation. Horm. Res. Paediatr. 84, 212–216 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Dai, W. et al. Functional analysis of SOX10 mutations identified in Chinese patients with Kallmann syndrome. Gene. 702, 99–106 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    Vaaralahti, K. et al. De novo SOX10 nonsense mutation in a patient with Kallmann syndrome and hearing loss. Pediatr. Res. 76, 115–116 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Amato, L. G. L. et al. New genetic findings in a large cohort of congenital hypogonadotropic hypogonadism. Eur. J. Endocrinol. 181, 103–119 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 581, 434–443 (2020).

    CAS  Article  Google Scholar 

  12. 12.

    Fokkema, I. F. et al. LOVD v.2.0: the next generation in gene variant databases. Hum. Mutat. 32, 557–563 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Touraine, R. L. et al. Neurological phenotype in Waardenburg syndrome type 4 correlates with novel SOX10 truncating mutations and expression in developing brain. Am. J. Hum. Genet. 66, 1496–1503 (2000).

    CAS  Article  Google Scholar 

  14. 14.

    Guo, M. H., Plummer, L., Chan, Y. M., Hirschhorn, J. N. & Lippincott, M. F. Burden testing of rare variants identified through exome sequencing via publicly available control data. Am. J. Hum. Genet. 103, 522–534 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Adzhubei, I., Jordan, D. M. & Sunyaev, S. R. Predicting functional effect of human missense mutations using PolyPhen-2. Curr. Protoc. Hum. Genet. 20 (2013).

  16. 16.

    Kumar, P., Henikoff, S. & Ng, P. C. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat. Protoc. 4, 1073–1081 (2009).

    CAS  Article  Google Scholar 

  17. 17.

    Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res 47, D886–D894 (2019).

    CAS  Article  Google Scholar 

  18. 18.

    Ioannidis, N. M. et al. REVEL: an ensemble method for predicting the pathogenicity of rare missense variants. Am. J. Hum. Genet. 99, 877–885 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Biesecker, L. G., Harrison, S. M. & ClinGen Sequence Variant Interpretation Working Group. The ACMG/AMP reputable source criteria for the interpretation of sequence variants. Genet. Med. 20, 1687–1688 (2018).

  20. 20.

    Vivekanandan, S., Moovarkumudalvan, B., Lescar, J. & Kolatkar, P. R. Crystallization and X-ray diffraction analysis of the HMG domain of the chondrogenesis master regulator Sox9 in complex with a ChIP-Seq-identified DNA element. Acta Crystallogr. F Struct. Biol. Commun. 71, 1437–1441 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Sykiotis, G. P. et al. Oligogenic basis of isolated gonadotropin-releasing hormone deficiency. Proc. Natl. Acad. Sci. U S A. 107, 15140–15144 (2010).

    CAS  Article  Google Scholar 

  22. 22.

    Chong, J. X. et al. The genetic basis of Mendelian phenotypes: discoveries, challenges, and opportunities. Am. J. Hum. Genet. 97, 199–215 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Chaoui, A. et al. Subnuclear re-localization of SOX10 and p54NRB correlates with a unique neurological phenotype associated with SOX10 missense mutations. Hum. Mol. Genet. 24, 4933–4947 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Inoue, K. et al. Translation of SOX10 3’ untranslated region causes a complex severe neurocristopathy by generation of a deleterious functional domain. Hum. Mol. Genet. 16, 3037–3046 (2007).

    CAS  Article  Google Scholar 

  25. 25.

    Inoue, K. et al. Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat. Genet. 36, 361–369 (2004).

    CAS  Article  Google Scholar 

  26. 26.

    Barraud, P., St John, J. A., Stolt, C. C., Wegner, M. & Baker, C. V. Olfactory ensheathing glia are required for embryonic olfactory axon targeting and the migration of gonadotropin-releasing hormone neurons. Biol. Open 2, 750–759 (2013).

    Article  Google Scholar 

  27. 27.

    Whitlock, K. E., Wolf, C. D. & Boyce, M. L. Gonadotropin-releasing hormone (GnRH) cells arise from cranial neural crest and adenohypophyseal regions of the neural plate in the zebrafish, Danio rerio. Dev. Biol. 257, 140–152 (2003).

    CAS  Article  Google Scholar 

  28. 28.

    Forni, P. E., Taylor-Burds, C., Melvin, V. S., Williams, T. & Wray, S. Neural crest and ectodermal cells intermix in the nasal placode to give rise to GnRH-1 neurons, sensory neurons, and olfactory ensheathing cells. J. Neurosci. 31, 6915–6927 (2011).

    CAS  Article  Google Scholar 

  29. 29.

    Noisa, P. & Raivio, T. Neural crest cells: from developmental biology to clinical interventions. Birth Defects Res. C Embryo Today 102, 263–274 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Grumbach, M. M. A window of opportunity: the diagnosis of gonadotropin deficiency in the male infant. J. Clin. Endocrinol. Metab. 90, 3122–3127 (2005).

    CAS  Article  Google Scholar 

  31. 31.

    Kohva, E. et al. Treatment of gonadotropin deficiency during the first year of life: long-term observation and outcome in five boys. Hum. Reprod. 34, 863–871 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    Izumi, Y. et al. Hypogonadotropic hypogonadism in a female patient previously diagnosed as having waardenburg syndrome due to a sox10 mutation. Endocrine. 49, 553–556 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Iso, M. et al. SOX10 mutation in Waardenburg syndrome type II. Am. J. Med. Genet. A. 146A, 2162–2163 (2008).

    CAS  Article  Google Scholar 

  34. 34.

    Stevenson, R. E., Vincent, V., Spellicy, C. J., Friez, M. J. & Chaubey, A. Biallelic deletions of the Waardenburg II syndrome gene, SOX10, cause a recognizable arthrogryposis syndrome. Am. J. Med. Genet. A. 176, 1968–1971 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Matera, I. et al. A sensitized mutagenesis screen identifies Gli3 as a modifier of Sox10 neurocristopathy. Hum. Mol. Genet. 17, 2118–2131 (2008).

    CAS  Article  Google Scholar 

  36. 36.

    Maione, L., Brailly-Tabard, S., Nevoux, J., Bouligand, J. & Young, J. Reversal of congenital hypogonadotropic hypogonadism in a man with Kallmann syndrome due to SOX10 mutation. Clin. Endocrinol. (Oxf.) 85, 988–989 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Shin, S. J. et al. Clinical, endocrinological, and molecular characterization of Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism: a single center experience. Ann. Pediatr. Endocrinol. Metab. 20, 27–33 (2015).

    Article  Google Scholar 

  38. 38.

    Siomou, E. et al. A 725 kb deletion at 22q13.1 chromosomal region including SOX10 gene in a boy with a neurologic variant of Waardenburg syndrome type 2. Eur. J. Med. Genet. 55, 641–645 (2012).

    Article  Google Scholar 

  39. 39.

    Bondurand, N. et al. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. Am. J. Hum. Genet. 81, 1169–1185 (2007).

    CAS  Article  Google Scholar 

  40. 40.

    Korsch, E., Steinkuhle, J., Massin, M., Lyonnet, S. & Touraine, R. L. Impaired autonomic control of the heart by SOX10 mutation. Eur. J. Pediatr. 160, 68–69 (2001).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank the families and referring clinicians for their participation in this study. This work was supported by US National Institutes of Health (NIH) grants P50HD028138 (S.B.S., W.F.C., R.B.); K23HD077043 (R.B.) and R01HD096324.

Author information

Affiliations

Authors

Contributions

Conceptualization: R.B.; Data curation: R.A.R., A.A.K., L.P, K.B.S., M.S., D.L.K.,; Formal analysis: R.A.R., A.A.K., R.B.; Funding acquisition: R.B., S.B.S., W.F.C.; Investigation: R.B., S.B.S., W.F.C., V.M., P.M.M., R.Q., K.G., E.F., J.E.H., A.D.; Methodology: R.B., F.J., R.S.; Validation: L.P., R.A.R.; Visualization: L.P., R.A.R., F.J., R.S.; Writing – original draft: R.A.R., A.A.K., R.B.; Writing – review & editing: S.B.S, W.F.C., R.Q., R.B.

Corresponding author

Correspondence to Ravikumar Balasubramanian.

Ethics declarations

Ethics declaration

All subjects provided written informed consent and research activities were approved by the Human Research Committee at the MGH, Boston, Massachusetts.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rojas, R.A., Kutateladze, A.A., Plummer, L. et al. Phenotypic continuum between Waardenburg syndrome and idiopathic hypogonadotropic hypogonadism in humans with SOX10 variants. Genet Med (2021). https://doi.org/10.1038/s41436-020-01051-3

Download citation

Search

Quick links