Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Transcriptomic meta-analysis characterizes molecular commonalities between psoriasis and obesity

Abstract

Despite the abundance of epidemiological evidence for the high comorbid rate between psoriasis and obesity, systematic approaches to common inflammatory mechanisms have not been adequately explored. We performed a meta-analysis of publicly available RNA-sequencing datasets to unveil putative mechanisms that are postulated to exacerbate both diseases, utilizing both late-stage, disease-specific meta-analyses and consensus gene co-expression network (cWGCNA). Single-gene meta-analyses reported several common inflammatory mechanisms fostered by the perturbed expression profile of inflammatory cells. Assessment of gene overlaps between both diseases revealed significant overlaps between up- (n = 170, P value = 6.07 × 10−65) and down-regulated (n = 49, P value = 7.1 × 10−7) genes, associated with increased T cell response and activated transcription factors. Our cWGCNA approach disentangled 48 consensus modules, associated with either the differentiation of leukocytes or metabolic pathways with similar correlation signals in both diseases. Notably, all our analyses confirmed the association of the perturbed T helper (Th)17 differentiation pathway in both diseases. Our novel findings through whole transcriptomic analyses characterize the inflammatory commonalities between psoriasis and obesity implying the assessment of several expression profiles that could serve as putative comorbid disease progression biomarkers and therapeutic interventions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-gene meta-analysis characterizes the inflammatory milieu in both comorbid diseases.
Fig. 2: Significant overlap between psoriasis and obesity DEGs illustrates the shared molecular profile.
Fig. 3: Consensus WGCNA confirms the shared inflammatory profile between psoriasis and obesity.

Similar content being viewed by others

Data availability

All datasets included in our study are available from the Gene Expression Omnibus database repository (https://www.ncbi.nlm.nih.gov/geo/, accessed on 3 September 2022).

Code availability

Softwares used in this study are available at: SRA tookit, https://github.com/ncbi/sra-tools; FastQC, https://github.com/s-andrews/FastQC; TrimGalore, https://github.com/FelixKrueger/TrimGalore; STAR, https://github.com/alexdobin/STAR; RSeQC, https://github.com/MonashBioinformaticsPlatform/RSeQC; Subread, https://github.com/ShiLab-Bioinformatics/subread; DESeq2, https://github.com/thelovelab/DESeq2; MetaVolcanoR, https://github.com/csbl-usp/MetaVolcanoR; clusterProfiler, https://github.com/YuLab-SMU/clusterProfiler; WGCNA, https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/; Cytoscape, https://cytoscape.org/. Code used in the manuscript is available at: https://github.com/antonatosc/psobesity.

References

  1. Parisi R, Symmons DPM, Griffiths CEM, Ashcroft DM. Global epidemiology of psoriasis: a systematic review of incidence and prevalence. J Investig Dermatol. 2013 Feb;133:377–85.

    Article  CAS  PubMed  Google Scholar 

  2. Tsoi LC, Stuart PE, Tian C, Gudjonsson JE, Das S, Zawistowski M, et al. Large scale meta-analysis characterizes genetic architecture for common psoriasis associated variants. Nat Commun. 2017;8:15382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bu J, Ding R, Zhou L, Chen X, Shen E. Epidemiology of psoriasis and comorbid diseases: a narrative review. Front Immunol. 2022;13:880201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen L, Li J, Zhu W, Kuang Y, Liu T, Zhang W, et al. Skin and gut microbiome in psoriasis: gaining insight into the pathophysiology of it and finding novel therapeutic strategies. Front Microbiol. 2020;11:589726.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hedin CRH, Sonkoly E, Eberhardson M, Ståhle M. Inflammatory bowel disease and psoriasis: modernizing the multidisciplinary approach. J Intern Med. 2021;290:257–78.

    Article  CAS  PubMed  Google Scholar 

  6. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. aoms. 2017;4:851–63.

    Article  Google Scholar 

  7. Longo M, Zatterale F, Naderi J, Parrillo L, Formisano P, Raciti GA, et al. Adipose tissue dysfunction as determinant of obesity-associated metabolic complications. IJMS. 2019;20:2358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Snekvik I, Smith CH, Nilsen TIL, Langan SM, Modalsli EH, Romundstad PR, et al. Obesity, waist circumference, weight change, and risk of incident psoriasis: prospective data from the HUNT study. J Investig Dermatol. 2017;137:2484–90.

    Article  CAS  PubMed  Google Scholar 

  9. Barros G, Duran P, Vera I, Bermúdez V. Exploring the links between obesity and psoriasis: a comprehensive review. IJMS. 2022;23:7499.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Leinonen R, Sugawara H, Shumway M, on behalf of the International Nucleotide Sequence Database Collaboration. The sequence read archive. Nucleic Acids Res. 2011;39:D19–D21.

    Article  CAS  PubMed  Google Scholar 

  11. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15–21.

    Article  CAS  PubMed  Google Scholar 

  12. Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, et al. Ensembl 2022. Nucleic Acids Res. 2022;50:D988–D995.

    Article  CAS  PubMed  Google Scholar 

  13. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 2012;28:2184–5.

    Article  CAS  PubMed  Google Scholar 

  14. Liao Y, Smyth GK, Shi W. featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics. 2014;30:923–30.

    Article  CAS  PubMed  Google Scholar 

  15. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yoon S, Baik B, Park T, Nam D. Powerful p-value combination methods to detect incomplete association. Sci Rep. 2021;11:6980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44:D457–62.

    Article  CAS  PubMed  Google Scholar 

  18. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation. 2021;2:100141.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 2008;9:559.

    Article  Google Scholar 

  20. Zhang Y, Parmigiani G, Johnson WE. ComBat-seq: batch effect adjustment for RNA-seq count data. NAR Genom Bioinform. 2020;2:lqaa078.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13:2498–504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:1–27.

  23. Li B, Tsoi LC, Swindell WR, Gudjonsson JE, Tejasvi T, Johnston A, et al. Transcriptome analysis of psoriasis in a large case–control sample: RNA-Seq provides insights into disease mechanisms. J Investig Dermatol. 2014;134:1828–38.

    Article  CAS  PubMed  Google Scholar 

  24. Swindell WR, Remmer HA, Sarkar MK, Xing X, Barnes DH, Wolterink L, et al. Proteogenomic analysis of psoriasis reveals discordant and concordant changes in mRNA and protein abundance. Genome Med. 2015;7:86.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Manczinger M, Kemény L. Novel factors in the pathogenesis of psoriasis and potential drug candidates are found with systems biology approach. PLoS ONE. 2013;8:e80751.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Davidovici BB, Sattar N, Jörg PC, Puig L, Emery P, Barker JN, et al. Psoriasis and systemic inflammatory diseases: potential mechanistic links between skin disease and co-morbid conditions. J Investig Dermatol. 2010;130:1785–96.

    Article  CAS  PubMed  Google Scholar 

  27. Langfelder P, Mischel PS, Horvath S. When is hub gene selection better than standard meta-analysis? PLoS ONE. 2013;8:e61505.

  28. Tian S, Krueger JG, Li K, Jabbari A, Brodmerkel C, Lowes MA, et al. Meta-analysis derived (MAD) transcriptome of psoriasis defines the “core” pathogenesis of disease. PLoS ONE. 2012;7:e44274.

  29. Auguet T, Guiu-Jurado E, Berlanga A, Terra X, Martinez S, Porras JA, et al. Downregulation of lipogenesis and fatty acid oxidation in the subcutaneous adipose tissue of morbidly obese women: altered lipogenic pathway in adipose tissue. Obesity. 2014;22:2032–8.

    Article  CAS  PubMed  Google Scholar 

  30. Caputo T, Tran VDT, Bararpour N, Winkler C, Aguileta G, Trang KB, et al. Anti-adipogenic signals at the onset of obesity-related inflammation in white adipose tissue. Cell Mol Life Sci. 2021;78:227–47.

    Article  CAS  PubMed  Google Scholar 

  31. Gil A, María Aguilera C, Gil-Campos M, Cañete R. Altered signalling and gene expression associated with the immune system and the inflammatory response in obesity. Br J Nutr. 2007;98:S121–6.

    Article  CAS  PubMed  Google Scholar 

  32. Zeng J, Zhang Y, Zhang H, Zhang Y, Gao L, Tong X, et al. RPL22 overexpression promotes psoriasis-like lesion by inducing keratinocytes abnormal biological behavior. Front Immunol. 2021;12:699900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gaye A, Doumatey AP, Davis SK, Rotimi CN, Gibbons GH. Whole-genome transcriptomic insights into protective molecular mechanisms in metabolically healthy obese African Americans. npj Genom Med. 2018;3:4.

    Article  PubMed  PubMed Central  Google Scholar 

  34. van der Kolk BW, Saari S, Lovric A, Arif M, Alvarez M, Ko A, et al. Molecular pathways behind acquired obesity: adipose tissue and skeletal muscle multiomics in monozygotic twin pairs discordant for BMI. Cell Rep. Med. 2021;2:100226.

    Article  PubMed  PubMed Central  Google Scholar 

  35. van Vliet S, Koh HCE, Patterson BW, Yoshino M, LaForest R, Gropler RJ, et al. Obesity is associated with increased basal and postprandial β-cell insulin secretion even in the absence of insulin resistance. Diabetes. 2020;69:2112–9.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Succurro E, Marini MA, Frontoni S, Hribal ML, Andreozzi F, Lauro R, et al. Insulin secretion in metabolically obese, but normal weight, and in metabolically healthy but obese individuals. Obesity. 2008;16:1881–6.

    Article  CAS  PubMed  Google Scholar 

  37. Blüher M. Metabolically healthy obesity. Endocr Rev. 2020;41:bnaa004.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Avila Cobos F, Alquicira-Hernandez J, Powell JE, Mestdagh P, De Preter K. Benchmarking of cell type deconvolution pipelines for transcriptomics data. Nat Commun. 2020;11:5650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pirro F, Caldarola G, Chiricozzi A, Burlando M, Mariani M, Parodi A, et al. Impact of body mass index on the efficacy of biological therapies in patients with psoriasis: a real-world study. Clin Drug Investig. 2021;41:917–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Matarese G. The link between obesity and autoimmunity. Science. 2023;379:1298–300.

    Article  CAS  PubMed  Google Scholar 

  41. Winer S, Paltser G, Chan Y, Tsui H, Engleman E, Winer D, et al. Obesity predisposes to Th17 bias. Eur J Immunol. 2009;39:2629–35.

    Article  CAS  PubMed  Google Scholar 

  42. Park SH, Lee KA, Choi JH, Park S, Kim DW, Jung SY. Impact of obesity on the IL-6 immune marker and Th17 immune cells in C57BL/6 mice models with imiquimod-induced psoriasis. IJMS. 2023;24:5592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paroutoglou K, Papadavid E, Christodoulatos GS, Dalamaga M. Deciphering the association between psoriasis and obesity: current evidence and treatment considerations. Curr Obes Rep. 2020;9:165–78.

    Article  PubMed  Google Scholar 

  44. Maezawa Y, Endo Y, Kono S, Ohno T, Nakamura Y, Teramoto N, et al. Weight loss improves inflammation by T helper 17 cells in an obese patient with psoriasis at high risk for cardiovascular events. J Diabetes Investig. 2023;14:1136–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mrowietz U, Sümbül M, Gerdes S. Depression, a major comorbidity of psoriatic disease, is caused by metabolic inflammation. Acad Dermatol Venereol. 2023;37:1731–8.

    Article  CAS  Google Scholar 

  46. Sivasami P, Elkins C, Diaz-Saldana PP, Goss K, Peng A, Hamersky M, et al. Obesity-induced dysregulation of skin-resident PPARγ+ Treg cells promotes IL-17A-mediated psoriatic inflammation. Immunity. 2023;56:1844–1861.e6.

    Article  CAS  PubMed  Google Scholar 

  47. Carrascosa JM, Rocamora V, Fernandez-Torres RM, Jimenez-Puya R, Moreno JC, Coll-Puigserver N, et al. Obesity and psoriasis: inflammatory nature of obesity, relationship between psoriasis and obesity, and therapeutic implications. Actas Dermo-Sifiliográficas. 2014;105:31–44.

    Article  CAS  PubMed  Google Scholar 

  48. Xu C, Ji J, Su T, Wang HW, Su ZL. The association of psoriasis and obesity: focusing on IL-17A-related immunological mechanisms. Int J Dermatol Venereol. 2021;4:116–21.

    Article  Google Scholar 

  49. Lazarevic V, Chen X, Shim JH, Hwang ES, Jang E, Bolm AN, et al. T-bet represses TH17 differentiation by preventing Runx1-mediated activation of the gene encoding RORγt. Nat Immunol. 2011;12:96–104.

    Article  CAS  PubMed  Google Scholar 

  50. Santarlasci V, Maggi L, Capone M, Querci V, Beltrame L, Cavalieri D, et al. Rarity of human T Helper 17 cells is due to retinoic acid orphan receptor-dependent mechanisms that limit their expansion. Immunity. 2012;36:201–14.

    Article  CAS  PubMed  Google Scholar 

  51. Deng J, Leijten E, Nordkamp MO, Zheng G, Pouw J, Tao W, et al. Multi‐omics integration reveals a core network involved in host defence and hyperkeratinization in psoriasis. Clin Transl Med [Internet]. 2022 [cited 23 April 2023];12. Available from: https://onlinelibrary.wiley.com/doi/10.1002/ctm2.976.

  52. Kisielnicka A, Szczerkowska-Dobosz A, Nowicki R. The influence of body weight of patients with chronic plaque psoriasis on biological treatment response. Postepy Dermatol Alergol. 2020;37:168–73.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wu MY, Yu CL, Yang SJ, Chi CC. Change in body weight and body mass index in psoriasis patients receiving biologics: a systematic review and network meta-analysis. J Am Acad Dermatol. 2020;82:101–9.

    Article  CAS  PubMed  Google Scholar 

  54. Sánchez-Valle J, Tejero H, Fernández JM, Juan D, Urda-García B, Capella-Gutiérrez S, et al. Interpreting molecular similarity between patients as a determinant of disease comorbidity relationships. Nat Commun. 2020;11:2854.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kisielnicka A, Sobalska-Kwapis M, Purzycka-Bohdan D, Nedoszytko B, Zabłotna M, Seweryn M, et al. The analysis of a Genome-Wide Association Study (GWAS) of overweight and obesity in psoriasis. IJMS. 2022;23:7396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Antonatos C, Grafanaki K, Georgiou S, Evangelou E, Vasilopoulos Y. Disentangling the complexity of psoriasis in the post-genome-wide association era. Genes Immun. 2023;24:236–47.

    Article  PubMed  Google Scholar 

  57. Xue X, Wu J, Li J, Xu J, Dai H, Tao C, et al. Indirubin attenuates mouse psoriasis-like skin lesion in a CD274-dependent manner: an achievement of RNA sequencing. Biosci Rep. 2018;38:BSR20180958.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Gupta R, Ahn R, Lai K, Mullins E, Debbaneh M, Dimon M, et al. Landscape of long noncoding RNAs in psoriatic and healthy skin. J Investig Dermatol. 2016;136:603–9.

    Article  CAS  PubMed  Google Scholar 

  59. Keermann M, Kõks S, Reimann E, Prans E, Abram K, Kingo K. Transcriptional landscape of psoriasis identifies the involvement of IL36 and IL36RN. BMC Genom. 2015;16:322.

    Article  Google Scholar 

  60. Tsoi LC, Rodriguez E, Degenhardt F, Baurecht H, Wehkamp U, Volks N, et al. Atopic dermatitis Is an IL-13-dominant disease with greater molecular heterogeneity compared to psoriasis. J Investig Dermatol. 2019;139:1480–9.

    Article  CAS  PubMed  Google Scholar 

  61. Fuchs A, Samovski D, Smith GI, Cifarelli V, Farabi SS, Yoshino J, et al. Associations among adipose tissue immunology, inflammation, exosomes and insulin sensitivity in people with obesity and nonalcoholic fatty liver disease. Gastroenterology. 2021;161:968–981.e12.

    Article  CAS  PubMed  Google Scholar 

  62. Fisk HL, Childs CE, Miles EA, Ayres R, Noakes PS, Paras-Chavez C, et al. Dysregulation of endocannabinoid concentrations in human subcutaneous adipose tissue in obesity and modulation by omega-3 polyunsaturated fatty acids. Clin Sci. 2021;135:185–200.

    Article  Google Scholar 

  63. Gao H, Kerr A, Jiao H, Hon C-C, Rydén M, Dahlman I, et al. Long non-coding RNAs associated with metabolic traits in human white adipose tissue. EBioMedicine. 2018;30:248–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cifarelli V, Beeman SC, Smith GI, Yoshino J, Morozov D, Beals JW, et al. Decreased adipose tissue oxygenation associates with insulin resistance in individuals with obesity. J Clin Investig. 2020;130:6688–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rey F, Messa L, Pandini C, Launi R, Barzaghini B, Micheletto G, et al. Transcriptome analysis of subcutaneous adipose tissue from severely obese patients highlights deregulation profiles in coding and non-coding oncogenes. IJMS. 2021;22:1989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

CA was financially supported by the «Andreas Mentzelopoulos Foundation».

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, CA and YV; methodology, CA, GKG, EE and YV; software, formal analysis, CA; data curation, CA; writing—original draft preparation, CA; writing—review and editing, CA, GKG, EE and YV; visualization, CA; supervision, YV. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yiannis Vasilopoulos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antonatos, C., Georgakilas, G.K., Evangelou, E. et al. Transcriptomic meta-analysis characterizes molecular commonalities between psoriasis and obesity. Genes Immun (2024). https://doi.org/10.1038/s41435-024-00271-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41435-024-00271-w

Search

Quick links