Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Comparative single-cell transcriptomic profile of hybrid immunity induced by adenovirus vector-based COVID-19 vaccines

Abstract

In this study, antibody response and a single-cell RNA-seq analysis were conducted on peripheral blood mononuclear cells from five different groups: naïve subjects vaccinated with AZD1222 (AZ) or Ad5-nCoV (Cso), individuals previously infected and later vaccinated (hybrid) with AZD1222 (AZ-hb) or Ad5-nCoV (Cso-hb), and those who were infected and had recovered from COVID-19 (Inf). The results showed that AZ induced more robust neutralizing antibody responses than Cso. The single-cell RNA data revealed a high frequency of memory B cells in the Cso and Cso-hb. In contrast, AZ and AZ-hb groups exhibited the highest proportion of activated naïve B cells expressing CXCR4. Transcriptomic analysis of CD4+ and CD8+ T cells demonstrated a heterogeneous response following vaccination, hybrid immunity, or natural infection. However, a single dose of Ad5-nCoV was sufficient to strongly activate CD4+ T cells (naïve and memory) expressing ANX1 and FOS, similar to the hybrid response observed with AZ. An interesting finding was the robust activation of a subset of CD8+ T cells expressing GZMB, GZMH, and IFNG genes in the Cso-hb group. Our findings suggest that both vaccines effectively stimulated the cellular immune response; however, the Ad5-nCoV induced a more robust CD8+ T-cell response in previously infected individuals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Single-cell transcriptomic profile of hybrid immunity induced by Ad5-nCoV and AZD1222 vaccines.
Fig. 2: Characterization of B cell response induced by vaccines (Ad5-nCoV and AZD1222) and hybrid immunity.
Fig. 3: BCR repertoire induced by vaccines (Ad5-nCoV and AZD1222) and hybrid immunity.
Fig. 4: Characterization of T cell response induced by vaccines (Ad5-nCoV and AZD1222) and hybrid immunity.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary information files (Table Source data). The single-cell RNA-seq data and BCR-seq data can be accessed in Zenodo (https://doi.org/10.5281/zenodo.7904759).

Code availability

The codes used to generate the results in the manuscript are available at: https://github.com/wanhui5867/adenovirus_C19_vaccines.

References

  1. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al. Efficacy and safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021;384:403–16.

    Article  CAS  PubMed  Google Scholar 

  2. Widge AT, Rouphael NG, Jackson LA, Anderson EJ, Roberts PC, Makhene M, et al. Durability of responses after SARS-CoV-2 mRNA-1273 vaccination. N Engl J Med. 2021;384:80–2.

    Article  CAS  PubMed  Google Scholar 

  3. Andreano E, Paciello I, Piccini G, Manganaro N, Pileri P, Hyseni I, et al. Hybrid immunity improves B cells and antibodies against SARS-CoV-2 variants. Nature. 2021;600:530–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chen Y, Tong P, Whiteman N, Moghaddam AS, Zarghami M, Zuiani A, et al. Immune recall improves antibody durability and breadth to SARS-CoV-2 variants. Sci Immunol. 2022;7:eabp8328.

    Article  CAS  PubMed  Google Scholar 

  5. Stamatatos L, Czartoski J, Wan YH, Homad LJ, Rubin V, Glantz H, et al. mRNA vaccination boosts cross-variant neutralizing antibodies elicited by SARS-CoV-2 infection. Science. 2021;372:1413–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Reynolds CJ, Pade C, Gibbons JM, Butler DK, Otter AD, Menacho K, et al. Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science. 2021;372:1418–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wratil PR, Stern M, Priller A, Willmann A, Almanzar G, Vogel E, et al. Three exposures to the spike protein of SARS-CoV-2 by either infection or vaccination elicit superior neutralizing immunity to all variants of concern. Nat Med. 2022;28:496–503.

    Article  CAS  PubMed  Google Scholar 

  8. Gelanew T, Mulu A, Abebe M, Bates TA, Wassie L, Tefer M, et al. A single dose ChAdOx1 nCoV-19 vaccine elicits high antibody responses in individuals with prior SARS-CoV-2 infection comparable to that of double dose vaccinated SARS-CoV-2 infection naive individuals. Vaccines. 2022;10:859.

  9. Guzman-Lopez S, Darwich-Salazar A, Bocanegra-Ibarias P, Salas-Trevino D, Flores-Trevino S, Perez-Alba E, et al. Clinical and immunologic efficacy of the recombinant adenovirus Type-5-Vectored (CanSino Bio) vaccine in university professors during the COVID-19 delta wave. Vaccines. 2022;10:656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cao Q, Wu S, Xiao C, Chen S, Chi X, Cui X, et al. Integrated single-cell analysis revealed immune dynamics during Ad5-nCoV immunization. Cell Discov. 2021;7:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xiaojie S, Yu L, Lei Y, Guang Y, Min Q. Neutralizing antibodies targeting SARS-CoV-2 spike protein. Stem Cell Res. 2020;50:102125.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Fagiani F, Catanzaro M, Lanni C. Molecular features of IGHV3-53-encoded antibodies elicited by SARS-CoV-2. Signal Transduct Target Ther. 2020;5:170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hao Y, Hao S, Andersen-Nissen E, Mauck WM 3rd, Zheng S, Butler A, et al. Integrated analysis of multimodal single-cell data. Cell. 2021;184:3573–87.e29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Borcherding N, Bormann NL, Kraus G. scRepertoire: an R-based toolkit for single-cell immune receptor analysis. F1000Res. 2020;9:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bewley KR, Coombes NS, Gagnon L, McInroy L, Baker N, Shaik I, et al. Quantification of SARS-CoV-2 neutralizing antibody by wild-type plaque reduction neutralization, microneutralization and pseudotyped virus neutralization assays. Nat Protoc. 2021;16:3114–40.

    Article  CAS  PubMed  Google Scholar 

  16. Melgoza-Gonzalez EA, Hinojosa-Trujillo D, Resendiz-Sandoval M, Mata-Haro V, Hernandez-Valenzuela S, Garcia-Vega M, et al. Analysis of IgG, IgA and IgM antibodies against SARS-CoV-2 spike protein S1 in convalescent and vaccinated patients with the Pfizer-BioNTech and CanSinoBio vaccines. Transbound Emerg Dis. 2022;69:e734–45.

    Article  CAS  PubMed  Google Scholar 

  17. Bates TA, McBride SK, Leier HC, Guzman G, Lyski ZL, Schoen D, et al. Vaccination before or after SARS-CoV-2 infection leads to robust humoral response and antibodies that effectively neutralize variants. Sci Immunol. 2022;7:eabn8014.

    Article  CAS  PubMed  Google Scholar 

  18. Hernández J, Dehesa-Canseco F, Vázquez-López AB, Reséndiz-Sandoval M, Caire-Juvera G, Solís-Hernández M, et al. Neutralization of Omicron BA.1, BA.5.1.6, BQ.1.3 and XBB1.1 induced by heterologous vaccination Ad5-nCoV and mRNA-1273. Signal Transduct Target Ther. 2023;8:174.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sherina N, Piralla A, Du L, Wan H, Kumagai-Braesch M, Andréll J, et al. Persistence of SARS-CoV-2-specific B and T cell responses in convalescent COVID-19 patients 6-8 months after the infection. Med. 2021;2:281–95.e4.

    Article  CAS  PubMed  Google Scholar 

  20. Marcotte H, Piralla A, Zuo F, Du L, Cassaniti I, Wan H, et al. Immunity to SARS-CoV-2 up to 15 months after infection. iScience. 2022;25:103743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. He B, Liu S, Wang Y, Xu M, Cai W, Liu J, et al. Rapid isolation and immune profiling of SARS-CoV-2 specific memory B cell in convalescent COVID-19 patients via LIBRA-seq. Signal Transduct Target Ther. 2021;6:195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nie Y, Waite J, Brewer F, Sunshine MJ, Littman DR, Zou YR. The role of CXCR4 in maintaining peripheral B cell compartments and humoral immunity. J Exp Med. 2004;200:1145–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Xiang H, Zhao Y, Li X, Liu P, Wang L, Wang M, et al. Landscapes and dynamic diversifications of B-cell receptor repertoires in COVID-19 patients. Hum Immunol. 2022;83:119–29.

    Article  CAS  PubMed  Google Scholar 

  24. Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H, et al. A highly conserved cryptic epitope in the receptor binding domains of SARS-CoV-2 and SARS-CoV. Science. 2020;368:630–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu H, Yuan M, Huang D, Bangaru S, Zhao F, Lee CD, et al. A combination of cross-neutralizing antibodies synergizes to prevent SARS-CoV-2 and SARS-CoV pseudovirus infection. Cell Host Microbe. 2021;29:806–18.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wen W, Su W, Tang H, Le W, Zhang X, Zheng Y, et al. Immune cell profiling of COVID-19 patients in the recovery stage by single-cell sequencing. Cell Discov. 2020;6:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kalia V, Sarkar S. Regulation of effector and memory CD8 T cell differentiation by IL-2-A balancing act. Front Immunol. 2018;9:2987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yeh N, Glosson NL, Wang N, Guindon L, McKinley C, Hamada H, et al. Tc17 cells are capable of mediating immunity to vaccinia virus by acquisition of a cytotoxic phenotype. J Immunol. 2010;185:2089–98.

    Article  CAS  PubMed  Google Scholar 

  29. Hamada H, de la Luz Garcia-Hernandez M, Reome JB, Misra SK, Strutt TM, McKinstry KK, et al. Tc17, a unique subset of CD8 T cells that can protect against lethal influenza challenge. J Immunol. 2009;182:3469–81.

    Article  CAS  PubMed  Google Scholar 

  30. Notarbartolo S, Ranzani V, Bandera A, Gruarin P, Bevilacqua V, Putignano AR, et al. Integrated longitudinal immunophenotypic, transcriptional and repertoire analyses delineate immune responses in COVID-19 patients. Sci Immunol. 2021;6:eabg5021.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was funded by Consejo Nacional de Ciencia y Tecnología (CONACyT), grant number 312677 (JH), the Swedish Research Council (2019-01302, 2020-06116, QPH), and the European Union’s Horizon 2020 research and innovation program (ATAC, grant number 101003650, QPH). The authors thank Roberto Carvente and Analitek for technical support during the single-cell experiments and the SENASICA and WHO Collaborating Centre on Antimicrobial Resistance in Foodborne and Environmental Bacteria (MEX-33), especially Mayrén Zamora Nava and Fabiola Hernández Pérez, for helping us to sequence our libraries.

Funding

This work was supported by CONACyT (grant number 312677, JH), the Swedish Research Council (grants 2019-01302 and 2020-06116, QPH), and the European Union’s Horizon 2020 research and innovation program through the ATAC project under grant number 101003650 (QPH).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, JH; methodology, MGV, HW, MRS, DHT, OV, VMH, FDC, MSH; formal analysis, MGV, HW; investigation, MGV, HW; resources, MSH, QPH, JH; writing—original draft preparation, MGV and HW, and JH; writing—review and editing; HM, QPH, JH; funding acquisition, QPH, JH. All authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Qiang Pan-Hammarström or Jesús Hernández.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Vega, M., Wan, H., Reséndiz-Sandoval, M. et al. Comparative single-cell transcriptomic profile of hybrid immunity induced by adenovirus vector-based COVID-19 vaccines. Genes Immun 25, 158–167 (2024). https://doi.org/10.1038/s41435-024-00270-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-024-00270-x

Search

Quick links