Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deciphering the host genetic factors conferring susceptibility to severe COVID-19 using exome sequencing

Abstract

The COVID-19 pandemic remains a significant public health concern despite the new vaccines and therapeutics. The clinical course of acute SARS-CoV-2 infection is highly variable and influenced by several factors related to the virus and the host. Numerous genetic studies, including candidate gene, exome, and genome sequencing studies, genome-wide association studies, and other omics efforts, have proposed various Mendelian and non-Mendelian associations with COVID-19 course. In this study, we conducted whole-exome sequencing on 90 unvaccinated patients from Turkey with no known comorbidities associated with severe COVID-19. Of these patients, 30 had severe, 30 had moderate, and 30 had mild/asymptomatic disease. We identified rare variants in genes associated with SARS-CoV-2 susceptibility and pathogenesis, with an emphasis on genes related to the regulation of inflammation, and discussed these in the context of the clinical course of the patients. In addition, we compared the frequencies of common variants between each group. Even though no variant remained statistically significant after correction for multiple testing, we observed that certain previously associated genes and variants showed significant associations before correction. Our study contributes to the existing literature regarding the genetic susceptibility to SARS-CoV-2. Future studies would be beneficial characterizing the host genetic properties in different populations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological process Gene Ontology enrichment analysis of the rare variants.

Similar content being viewed by others

References

  1. Chatterjee S, Bhattacharya M, Nag S, Dhama K, Chakraborty C. A detailed overview of SARS-CoV-2 Omicron: its sub-variants, mutations and pathophysiology, clinical characteristics, immunological landscape, immune escape, and therapies. Viruses. 2023;15:167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhou F, Yu T, Du R, Fan G, Liu Y, Liu Z, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395:1054–1062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang JJ, Dong X, Liu GH, Gao YD. Risk and protective factors for COVID-19 morbidity, severity, and mortality. Clin Rev Allergy Immunol. 2023;64:90.

    Article  CAS  PubMed  Google Scholar 

  4. Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, et al. COVID-19 with different severities: a multicenter study of clinical features. Am J Respir Crit Care Med. 2020;201:1380–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Niederman MS, Richeldi L, Chotirmall SH, Bai C. Rising to the challenge of CovID-19: advice for pulmonary and critical care and an agenda for research. Am J Respir Crit Care Med 2020;201:1019–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu C, Chen X, Cai Y, Xia J, Zhou X, Xu S, et al. Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China. JAMA Intern Med. 2020;180:934–43.

    Article  CAS  PubMed  Google Scholar 

  7. Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol. 2020;20:442–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Quillent C, Oberlin E, Braun J, Rousset D, Gonzalez-Canali G, Métais P, et al. HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene. Lancet. 1998;351:14–18.

    Article  CAS  PubMed  Google Scholar 

  9. Julg B, Moodley ES, Qi Y, Ramduth D, Reddy S, Mncube Z, et al. Possession of HLA class II DRB1*1303 associates with reduced viral loads in chronic HIV-1 clade C and B infection. J Infect Dis. 2011;203:803–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Agostini S, Mancuso R, Guerini FR, D’Alfonso S, Agliardi C, Hernis A, et al. HLA alleles modulate EBV viral load in multiple sclerosis. J Transl Med. 2018;16:80 https://doi.org/10.1186/s12967-018-1450-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lim HK, Huang SXL, Chen J, Kerner G, Gilliaux O, Bastard P, et al. Severe influenza pneumonitis in children with inherited TLR3 deficiency. J Exp Med. 2019;216:2038–56. https://doi.org/10.1084/jem.20181621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Darbeheshti F, Rezaei N. Genetic predisposition models to COVID-19 infection. Med Hypotheses 2020;142:109818 https://doi.org/10.1016/j.mehy.2020.109818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ferreira LC, Gomes CEM, Rodrigues-Neto JF, Jeronimo SMB. Genome-wide association studies of COVID-19: connecting the dots. Infect Genet Evol. 2022;106:105379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pairo-Castineira E, Clohisey S, Klaric L, Bretherick AD, Rawlik K, Pasko D, et al. Genetic mechanisms of critical illness in COVID-19. Nature. 2021;591:92–98.

    Article  PubMed  Google Scholar 

  15. Augusto DG, Murdolo LD, Chatzileontiadou DSM, Sabatino JJ, Yusufali T, Peyser ND, et al. A common allele of HLA is associated with asymptomatic SARS-CoV-2 infection. Nature. 2023;620:128–36.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  16. Niemi MEK, Karjalainen J, Liao RG, Neale BM, Daly M, Ganna A, et al. Mapping the human genetic architecture of COVID-19. Nature. 2021;600:472–7.

    Article  CAS  Google Scholar 

  17. Casanova JL, Su HC, Abel L, Aiuti A, Almuhsen S, Arias AA, et al. A global effort to define the human genetics of protective immunity to SARS-CoV-2 infection. Cell. 2020;181:1194–9. https://doi.org/10.1016/j.cell.2020.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang Q, Matuozzo D, Le Pen J, Lee D, Moens L, Asano T, et al. Recessive inborn errors of type I IFN immunity in children with COVID-19 pneumonia. J Exp Med. 2022;219:e20220131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. van de Veerdonk FL, Giamarellos-Bourboulis E, Pickkers P, Derde L, Leavis H, van Crevel R, et al. A guide to immunotherapy for COVID-19. Nat Med. 2022;28:39–50.

    Article  PubMed  Google Scholar 

  20. Carter-Timofte ME, Jørgensen SE, Freytag MR, Thomsen MM, Brinck Andersen NS, Al-Mousawi A, et al. Deciphering the role of host genetics in susceptibility to severe COVID-19. Front Immunol. 2020;11:1606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duman N, ALzaidi Z, Aynekin B, Taskin D, Demirors B, Yildirim A, et al. COVID-19 vaccine candidates and vaccine development platforms available worldwide. J Pharm Anal. 2021;11:675–82. https://doi.org/10.1016/j.jpha.2021.09.004

    Article  PubMed  PubMed Central  Google Scholar 

  22. Altmann DM, Boyton RJ. COVID-19 vaccination: the road ahead. Science. 2022;375:1127–32. https://doi.org/10.1126/science.abn1755

    Article  CAS  PubMed  ADS  Google Scholar 

  23. Carabelli AM, Peacock TP, Thorne LG, Harvey WT, Hughes J, de Silva TI, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness. Nat Rev Microbiol. 2023;21:162–77. https://doi.org/10.1038/s41579-022-00841-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bowe B, Xie Y, Al-Aly Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat Med. 2022;28:2398–405. https://doi.org/10.1038/s41591-022-02051-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeng N, Zhao YM, Yan W, Li C, Lu QD, Liu L, et al. A systematic review and meta-analysis of long term physical and mental sequelae of COVID-19 pandemic: call for research priority and action. Mol Psychiatry. 2023;28:423–33. https://doi.org/10.1038/s41380-022-01614-7

    Article  CAS  PubMed  Google Scholar 

  26. Genetic susceptibility to severe COVID-19. Infect Genet Evol. 2023;110:105426. https://doi.org/10.1016/j.meegid.2023.105426

  27. Kiraz A, Sezer O, Alemdar A, Canbek S, Duman N, Bisgin A, et al. Contribution of genotypes in Prothrombin and Factor V Leiden to COVID‐19 and disease severity in patients at high risk for hereditary thrombophilia. Abst J Med Virol. 2023;95. https://doi.org/10.1002/jmv.28457

  28. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581:434–43.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  29. Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164 https://doi.org/10.1093/NAR/GKQ603

    Article  PubMed  PubMed Central  Google Scholar 

  30. Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. Jvenn: an interactive Venn diagram viewer. BMC Bioinforma. 2014;15:1–7.

    Article  Google Scholar 

  31. Köhler S, Gargano M, Matentzoglu N, Carmody LC, Lewis-Smith D, Vasilevsky NA, et al. The human phenotype ontology in 2021. Nucleic Acids Res. 2021;49:D1207–D1217. https://doi.org/10.1093/nar/gkaa1043

    Article  CAS  PubMed  Google Scholar 

  32. Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583:459–68. https://doi.org/10.1038/s41586-020-2286-9

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  33. Martin AR, Williams E, Foulger RE, Leigh S, Daugherty LC, Niblock O, et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat Genet. 2019;51:1560–5. https://doi.org/10.1038/s41588-019-0528-2

    Article  CAS  PubMed  Google Scholar 

  34. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The Ensembl variant effect predictor. Genome Biol. 2016;17. https://doi.org/10.1186/s13059-016-0974-4.

  35. Rentzsch P, Witten D, Cooper GM, Shendure J, Kircher M. CADD: predicting the deleteriousness of variants throughout the human genome. Nucleic Acids Res. 2019;47:D886–D894. https://doi.org/10.1093/nar/gky1016

    Article  CAS  PubMed  Google Scholar 

  36. Frazer J, Notin P, Dias M, Gomez A, Min JK, Brock K, et al. Disease variant prediction with deep generative models of evolutionary data. Nature. 2021;599:91–95. https://doi.org/10.1038/s41586-021-04043-8

    Article  CAS  PubMed  ADS  Google Scholar 

  37. Henikoff S, Henikoff JG. Amino acid substitution matrices from protein blocks. Proc Natl Acad Sci USA. 1992;89:10915–9. https://doi.org/10.1073/pnas.89.22.10915

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  38. Ge SX, Jung D, Jung D, Yao R. ShinyGO: a graphical gene-set enrichment tool for animals and plants. Bioinformatics. 2020;36:2628–9. https://doi.org/10.1093/bioinformatics/btz931

    Article  CAS  PubMed  Google Scholar 

  39. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B. 1995;57. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

  40. R Core Team. R Core Team 2021 R: a language and environment for statistical computing. R foundation for statistical computing. https://www.R-project.org/. R Found Stat Comput. 2022;2.

  41. Liu Y, Liu FL, Bai ZJ, Zhao N, Zhang LY, Lu X, et al. Defective activities, but not secretions, resulting from gene point mutations of human mannan-binding lectin. Mol Med Rep. 2012;5:1121–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gao, dong Y, Ding M, Dong X, Zhang Jjin, Kursat Azkur A, et al. Risk factors for severe and critically ill COVID-19 patients: a review. Allergy. 2021;76:428–55.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang SY, Zhang Q, Casanova JL, Su HC, Abel L, Bastard P, et al. Severe COVID-19 in the young and healthy: monogenic inborn errors of immunity? Nat Rev Immunol. 2020;20:455–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ishak A, Mehendale M, AlRawashdeh MM, Sestacovschi C, Sharath M, Pandav K, et al. The association of COVID-19 severity and susceptibility and genetic risk factors: a systematic review of the literature. Gene. 2022;836:146674 https://doi.org/10.1016/J.GENE.2022.146674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Van Der Made CI, Simons A, Schuurs-Hoeijmakers J, Van Den Heuvel G, Mantere T, Kersten S, et al. Presence of genetic variants among young men with severe COVID-19. JAMA J Am Med Assoc. 2020;324:663–73. https://doi.org/10.1001/jama.2020.13719

    Article  CAS  Google Scholar 

  46. Asano T, Boisson B, Onodi F, Matuozzo D, Moncada-Velez M, Renkilaraj MRLM, et al. X-linked recessive TLR7 deficiency in ~1% of men under 60 years old with life-threatening COVID-19. Sci Immunol. 2021;6:eabl4348 https://doi.org/10.1126/SCIIMMUNOL.ABL4348

    Article  PubMed  PubMed Central  Google Scholar 

  47. Edahiro R, Shirai Y, Takeshima Y, Sakakibara S, Yamaguchi Y, Murakami T, et al. Single-cell analyses and host genetics highlight the role of innate immune cells in COVID-19 severity. Nat Genet. 2023;55:753–67. https://doi.org/10.1038/s41588-023-01375-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cen X, Wang F, Huang X, Jovic D, Dubee F, Yang H, et al. Towards precision medicine: Omics approach for COVID-19. Biosaf Heal. 2023;5:78–88. https://doi.org/10.1016/j.bsheal.2023.01.002

    Article  Google Scholar 

  49. Kousathanas A, Pairo-Castineira E, Rawlik K, Stuckey A, Odhams CA, Walker S, et al. Whole-genome sequencing reveals host factors underlying critical COVID-19. Nature. 2022;607:97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Degenhardt F, Ellinghaus D, Juzenas S, Lerga-Jaso J, Wendorff M, Maya-Miles D, et al. Detailed stratified GWAS analysis for severe COVID-19 in four European populations. Hum Mol Genet. 2022;31:3945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Rusiñol L, Puig L. Tyk2 targeting in immune-mediated inflammatory diseases. Int J Mol Sci. 2023;24:3391.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pairo-Castineira E, Rawlik K, Bretherick AD, Qi T, Wu Y, Nassiri I, et al. GWAS and meta-analysis identifies 49 genetic variants underlying critical COVID-19. Nature. 2023;617:764–8. https://doi.org/10.1038/s41586-023-06034-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ng ASL, Kramer J, Centurion A, Dalmau J, Huang E, Cotter JA, et al. Clinico-pathological correlation in adenylate kinase 5 autoimmune limbic encephalitis. J Neuroimmunol. 2015;287:31–5. https://doi.org/10.1016/j.jneuroim.2015.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Veleri S. Neurotropism of SARS-CoV-2 and neurological diseases of the central nervous system in COVID-19 patients. Exp Brain Res. 2022;240:9–25. https://doi.org/10.1007/s00221-021-06244-z

    Article  CAS  PubMed  Google Scholar 

  55. Sadeghi MB, Nakhaee A, Saravani R, Sargazi S. Significant association of LXRβ (NR1H2) polymorphisms (rs28514894, rs2303044) with type 2 diabetes mellitus and laboratory characteristics. J Diabetes Metab Disord. 2021;20:261–70. https://doi.org/10.1007/s40200-021-00740-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Korf H, Vander Beken S, Romano M, Steffensen KR, Stijlemans B, Gustafsson JÅ, et al. Liver X receptors contribute to the protective immune response against Mycobacterium tuberculosis in mice. J Clin Investig. 2009;119:1626–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, et al. Human inborn errors of immunity: 2022 update on the classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol. 2022;42:1473.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ramasamy S, Subbian S. Critical determinants of cytokine storm and type I interferon response in COVID-19 pathogenesis. Clin Microbiol Rev. 2021;34:e00299–20. https://doi.org/10.1128/CMR.00299-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Touitou I, Koné-Paut I. Autoinflammatory diseases. Best Pr Res Clin Rheumatol. 2008;22:811–29.

    Article  CAS  Google Scholar 

  60. Miano M, Cappelli E, Pezzulla A, Venè R, Grossi A, Terranova P, et al. FAS-mediated apoptosis impairment in patients with ALPS/ALPS-like phenotype carrying variants on CASP10 gene. Br J Haematol. 2019;187:502–8.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang K, Astigarraga I, Bryceson Y, Lehmberg K, Machowicz R, Marsh R, et al. Familial hemophagocytic lymphohistiocytosis. GeneReviews® 2021. https://www.ncbi.nlm.nih.gov/books/NBK1444/ (accessed 6 April 2023).

  62. Cunningham L, Kimber I, Basketter D, Simmonds P, McSweeney S, Tziotzios C, et al. Perforin, COVID-19 and a possible pathogenic auto-inflammatory feedback loop. Scand J Immunol. 2021;94:e13102 https://doi.org/10.1111/SJI.13102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Abidi E, El Nekidy WS, Alefishat E, Rahman N, Petroianu GA, El-Lababidi R, et al. Tocilizumab and COVID-19: timing of administration and efficacy. Front Pharm. 2022;13:825749 https://doi.org/10.3389/FPHAR.2022.825749

    Article  CAS  Google Scholar 

  64. Cabrera-Marante O, de Frías ER, Pleguezuelo DE, Allende LM, Serrano A, Laguna-Goya R, et al. Perforin gene variant A91V in young patients with severe COVID-19. Haematologica. 2020;105:2844–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu J, Fernandes-Alnemri T, Alnemri ES. Involvement of the AIM2, NLRC4, and NLRP3 inflammasomes in caspase-1 activation by Listeria monocytogenes. J Clin Immunol. 2010;30:693–702. https://doi.org/10.1007/s10875-010-9425-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Strober W, Watanabe T. NOD2, an intracellular innate immune sensor involved in host defense and Crohn’s disease. Mucosal Immunol. 2011;4:484–95. https://doi.org/10.1038/mi.2011.29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-CoV-2 entry into cells. Nat Rev Mol Cell Biol. 2022;23:3–20. https://doi.org/10.1038/s41580-021-00418-x

    Article  CAS  PubMed  Google Scholar 

  68. Duman N, Tuncel G, Bisgin A, Bozdogan ST, Sag SO, Gul S, et al. Analysis of ACE2 and TMPRSS2 coding variants as a risk factor for SARS‐CoV‐2 from 946 whole‐exome sequencing data in the Turkish population. Abst J Med Virol. 2022;94:5225–43. https://doi.org/10.1002/jmv.27976.

    Article  CAS  Google Scholar 

  69. Baldassarri M, Fava F, Fallerini C, Daga S, Benetti E, Zguro K, et al. Severe COVID-19 in hospitalized carriers of single CFTR pathogenic variants. J Pers Med. 2021;11:558 https://doi.org/10.3390/jpm11060558

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nunnari G, Sanfilippo C, Castrogiovanni P, Imbesi R, Li Volti G, Barbagallo I, et al. Network perturbation analysis in human bronchial epithelial cells following SARS-CoV2 infection. Exp Cell Res. 2020;395:112204 https://doi.org/10.1016/j.yexcr.2020.112204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang Q, Liu Z, Moncada-Velez M, Chen J, Ogishi M, Bigio B, et al. Inborn errors of type I IFN immunity in patients with life-threatening COVID-19. Science. 2020;370:eabd4570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J. 2021;19:976–88. https://doi.org/10.1016/j.csbj.2021.01.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kuijpers Y, Chu X, Jaeger M, Moorlag SJCFM, Koeken VACM, Zhang B, et al. The genetic risk for COVID-19 severity is associated with defective immune responses. Front Immunol. 2022;13:859387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The study was funded by Erciyes University BAP TCD-2021-10936 and received by Munis Dundar.

Author information

Authors and Affiliations

Authors

Contributions

MD, KU, and FO conceived the study. MD was in charge of overall direction and planning. MD, OY, GZ, NT, KG, KU, and FO designed the study protocol. KU, FO, RCY, HS, ZOS, OB, YS, KG, and AKA provided and gathered patient data. KU and HA contributed to the molecular studies. GZ, VE, AC, and IOS performed the statistical analyses. KU and FO performed the molecular analyses. FO, KU, GZ, and VE wrote the manuscript, MD and YO provided supervision and critical review of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Munis Dundar.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uslu, K., Ozcelik, F., Zararsiz, G. et al. Deciphering the host genetic factors conferring susceptibility to severe COVID-19 using exome sequencing. Genes Immun 25, 14–42 (2024). https://doi.org/10.1038/s41435-023-00232-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-023-00232-9

Search

Quick links