Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Research progress on the application of single-cell sequencing in autoimmune diseases

Abstract

Autoimmune diseases (AIDs) are caused by immune tolerance deficiency or abnormal immune regulation, leading to damage to host organs. The complicated pathogenesis and varied clinical symptoms of AIDs pose great challenges in diagnosing and monitoring this disease. Regrettably, the etiological factors and pathogenesis of AIDs are still not completely understood. It is noteworthy that the development of single-cell RNA sequencing (scRNA-seq) technology provides a new tool for analyzing the transcriptome of AIDs. In this essay, we have summarized the development of scRNA-seq technology, and made a relatively systematic review of the current research progress of scRNA-seq technology in the field of AIDs, providing a reference to preferably understand the pathogenesis, diagnosis, and treatment of AIDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ortona E, Pierdominici M, Maselli A, Veroni C, Aloisi F, Shoenfeld Y. Sex-based differences in autoimmune diseases. Ann Ist Super Sanita. 2016;52:205–12.

    CAS  PubMed  Google Scholar 

  2. Sudres M, Verdier J, Truffault F, Le Panse R, Berrih-Aknin S. Pathophysiological mechanisms of autoimmunity. Ann N. Y Acad Sci. 2018;1413:59–68.

    Article  PubMed  Google Scholar 

  3. Surace AEA, Hedrich CM. The role of epigenetics in autoimmune/inflammatory disease. Front Immunol. 2019;10:1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee DSW, Rojas OL, Gommerman JL. B cell depletion therapies in autoimmune disease: advances and mechanistic insights. Nat Rev Drug Discov. 2021;20:179–99.

    Article  CAS  PubMed  Google Scholar 

  5. Rose NR. Prediction and prevention of autoimmune disease in the 21st century: a review and preview. Am J Epidemiol. 2016;183:403–6.

    Article  PubMed  Google Scholar 

  6. Ramalingam S, Shah A. Stem cell therapy as a treatment for autoimmune disease-updates in lupus, scleroderma, and multiple sclerosis. Curr Allergy Asthma Rep. 2021;21:22.

    Article  CAS  PubMed  Google Scholar 

  7. Edner NM, Carlesso G, Rush JS, Walker LSK. Targeting co-stimulatory molecules in autoimmune disease. Nat Rev Drug Discov. 2020;19:860–83.

    Article  CAS  PubMed  Google Scholar 

  8. Ryba-Stanisławowska M, Sakowska J, Zieliński M, Ławrynowicz U, Trzonkowski P. Regulatory T cells: the future of autoimmune disease treatment. Expert Rev Clin Immunol. 2019;15:777–89.

    Article  PubMed  Google Scholar 

  9. Barnas JL, Looney RJ, Anolik JH. B cell targeted therapies in autoimmune disease. Curr Opin Immunol. 2019;61:92–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao M, Jiang J, Zhao M, Chang C, Wu H, Lu Q. The application of single-cell RNA sequencing in studies of autoimmune diseases: a comprehensive review. Clin Rev Allergy Immunol. 2021;60:68–86.

    Article  CAS  PubMed  Google Scholar 

  11. Hanna SJ, Tatovic D, Thayer TC, Dayan CM. Insights from single cell RNA sequencing into the immunology of type 1 diabetes- cell phenotypes and antigen specificity. Front Immunol. 2021;12:751701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vanarsa K, Soomro S, Zhang T, Strachan B, Pedroza C, Nidhi M, et al. Quantitative planar array screen of 1000 proteins uncovers novel urinary protein biomarkers of lupus nephritis. Ann Rheum Dis. 2020;79:1349–61.

    Article  CAS  PubMed  Google Scholar 

  13. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods. 2009;6:377–82.

    Article  CAS  PubMed  Google Scholar 

  14. Ziegenhain C, Vieth B, Parekh S, Reinius B, Guillaumet-Adkins A, Smets M, et al. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 2017;65:631–43.e634.

    Article  CAS  PubMed  Google Scholar 

  15. Sasagawa Y, Hayashi T, Nikaido I. Strategies for converting RNA to amplifiable cDNA for single-cell RNA sequencing methods. Adv Exp Med Biol. 2019;1129:1–17.

    Article  CAS  PubMed  Google Scholar 

  16. Islam S, Kjällquist U, Moliner A, Zajac P, Fan JB, Lönnerberg P, et al. Characterization of the single-cell transcriptional landscape by highly multiplex RNA-seq. Genome Res. 2011;21:1160–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ramsköld D, Luo S, Wang YC, Li R, Deng Q, Faridani OR, et al. Author correction: full-length mRNA-seq from single-cell levels of RNA and individual circulating tumor cells. Nat Biotechnol. 2020;38:374.

    Article  PubMed  Google Scholar 

  18. Picelli S, Faridani OR, Björklund AK, Winberg G, Sagasser S, Sandberg R. Full-length RNA-seq from single cells using Smart-seq2. Nat Protoc. 2014;9:171–81.

    Article  CAS  PubMed  Google Scholar 

  19. Hashimshony T, Wagner F, Sher N, Yanai I. CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. Cell Rep. 2012;2:666–73.

    Article  CAS  PubMed  Google Scholar 

  20. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F, Zaretsky I, et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 2014;343:776–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pan X, Durrett RE, Zhu H, Tanaka Y, Li Y, Zi X, et al. Two methods for full-length RNA sequencing for low quantities of cells and single cells. Proc Natl Acad Sci USA. 2013;110:594–9.

    Article  CAS  PubMed  Google Scholar 

  22. Huang XT, Li X, Qin PZ, Zhu Y, Xu SN, Chen JP. Technical advances in single-cell RNA sequencing and applications in normal and malignant hematopoiesis. Front Oncol. 2018;8:582.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Jovic D, Liang X, Zeng H, Lin L, Xu F, Luo Y. Single-cell RNA sequencing technologies and applications: a brief overview. Clin Transl Med. 2022;12:e694.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeng L, Yang K, Zhang T, Zhu X, Hao W, Chen H, et al. Research progress of single-cell transcriptome sequencing in autoimmune diseases and autoinflammatory disease: a review. J Autoimmun. 2022;133:102919.

    Article  CAS  PubMed  Google Scholar 

  25. Guo MT, Rotem A, Heyman JA, Weitz DA. Droplet microfluidics for high-throughput biological assays. Lab Chip. 2012;12:2146–55.

    Article  CAS  PubMed  Google Scholar 

  26. Guo F, Li L, Li J, Wu X, Hu B, Zhu P, et al. Single-cell multi-omics sequencing of mouse early embryos and embryonic stem cells. Cell Res. 2017;27:967–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aguilar-Bravo B, Sancho-Bru P. Laser capture microdissection: techniques and applications in liver diseases. Hepatol Int. 2019;13:138–47.

    Article  PubMed  Google Scholar 

  28. Nakamura N, Ruebel K, Jin L, Qian X, Zhang H, Lloyd RV. Laser capture microdissection for analysis of single cells. Methods Mol Med. 2007;132:11–8.

    Article  CAS  PubMed  Google Scholar 

  29. Rao BH, Souček P, Hlaváč V. Laser capture microdissection: a gear for pancreatic cancer research. Int J Mol Sci. 2022;23.

  30. Chen J, Suo S, Tam PP, Han JJ, Peng G, Jing N. Spatial transcriptomic analysis of cryosectioned tissue samples with Geo-seq. Nat Protoc. 2017;12:566–80.

    Article  CAS  PubMed  Google Scholar 

  31. El-Hajjar L, Ali Ahmad F, Nasr R. A guide to flow cytometry: components, basic principles, experimental design, and cancer research applications. Curr Protoc. 2023;3:e721.

    Article  PubMed  Google Scholar 

  32. Zilionis R, Nainys J, Veres A, Savova V, Zemmour D, Klein AM, et al. Single-cell barcoding and sequencing using droplet microfluidics. Nat Protoc. 2017;12:44–73.

    Article  CAS  PubMed  Google Scholar 

  33. Valihrach L, Androvic P, Kubista M. Platforms for single-cell collection and analysis. Int J Mol Sci. 2018;19:807.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zheng GX, Terry JM, Belgrader P, Ryvkin P, Bent ZW, Wilson R, et al. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 2017;8:14049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan HC, Fu GK, Fodor SP. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science. 2015;347:1258367.

    Article  PubMed  Google Scholar 

  36. Aicher TP, Carroll S, Raddi G, Gierahn T, Wadsworth MH 2nd, Hughes TK, et al. Seq-Well: a sample-efficient, portable picowell platform for massively parallel single-cell RNA sequencing. Methods Mol Biol. 2019;1979:111–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, et al. Mapping the mouse cell Atlas by Microwell-Seq. Cell. 2018;173:1307.

    Article  CAS  PubMed  Google Scholar 

  38. Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes. Lancet. 2014;383:69–82.

    Article  PubMed  Google Scholar 

  39. Cerosaletti K, Barahmand-Pour-Whitman F, Yang J, DeBerg HA, Dufort MJ, Murray SA, et al. Single-Cell RNA sequencing reveals expanded clones of islet antigen-reactive CD4(+) T cells in peripheral blood of subjects with type 1 diabetes. J Immunol. 2017;199:323–35.

    Article  CAS  PubMed  Google Scholar 

  40. Linsley PS, Barahmand-Pour-Whitman F, Balmas E, DeBerg HA, Flynn KJ, Hu AK, et al. Autoreactive T cell receptors with shared germline-like α chains in type 1 diabetes. JCI Insight. 2021;6:e151349.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zakharov PN, Hu H, Wan X, Unanue ER. Single-cell RNA sequencing of murine islets shows high cellular complexity at all stages of autoimmune diabetes. J Exp Med. 2020;217:e20192362.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang S, Flibotte S, Camunas-Soler J, MacDonald PE, Johnson JD. A new hypothesis for type 1 diabetes risk: the at-risk allele at rs3842753 associates with increased beta-cell INS messenger RNA in a meta-analysis of single-cell RNA-sequencing data. Can J Diabetes. 2021;45:775–84.e772.

    Article  CAS  PubMed  Google Scholar 

  43. Bennett ST, Lucassen AM, Gough SC, Powell EE, Undlien DE, Pritchard LE, et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet. 1995;9:284–92.

    Article  CAS  PubMed  Google Scholar 

  44. Vafiadis P, Bennett ST, Colle E, Grabs R, Goodyer CG, Polychronakos C. Imprinted and genotype-specific expression of genes at the IDDM2 locus in pancreas and leucocytes. J Autoimmun. 1996;9:397–403.

    Article  CAS  PubMed  Google Scholar 

  45. Vafiadis P, Bennett ST, Todd JA, Nadeau J, Grabs R, Goodyer CG, et al. Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet. 1997;15:289–92.

    Article  CAS  PubMed  Google Scholar 

  46. Qadir MMF, Álvarez-Cubela S, Klein D, van Dijk J, Muñiz-Anquela R, Moreno-Hernández YB, et al. Single-cell resolution analysis of the human pancreatic ductal progenitor cell niche. Proc Natl Acad Sci USA. 2020;117:10876–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zhong J, Mao X, Li H, Shen G, Cao X, He N, et al. Single-cell RNA sequencing analysis reveals the relationship of bone marrow and osteopenia in STZ-induced type 1 diabetic mice. J Adv Res. 2022;41:145–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, et al. Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N. Engl J Med. 2003;349:1526–33.

    Article  CAS  PubMed  Google Scholar 

  49. Nehar-Belaid D, Hong S, Marches R, Chen G, Bolisetty M, Baisch J, et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level. Nat Immunol. 2020;21:1094–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Peterson VM, Zhang KX, Kumar N, Wong J, Li L, Wilson DC, et al. Multiplexed quantification of proteins and transcripts in single cells. Nat Biotechnol. 2017;35:936–9.

    Article  CAS  PubMed  Google Scholar 

  51. Stoeckius M, Zheng S, Houck-Loomis B, Hao S, Yeung BZ, Mauck WM 3rd, et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 2018;19:224.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zheng F, Xu H, Zhang C, Hong X, Liu D, Tang D, et al. Immune cell and TCR/BCR repertoire profiling in systemic lupus erythematosus patients by single-cell sequencing. Aging (Albany NY). 2021;13:24432–48.

    Article  CAS  PubMed  Google Scholar 

  53. Li Y, Ma C, Liao S, Qi S, Meng S, Cai W, et al. Combined proteomics and single cell RNA-sequencing analysis to identify biomarkers of disease diagnosis and disease exacerbation for systemic lupus erythematosus. Front Immunol. 2022;13:969509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang Y, Huang Z, Xiao Y, Wan W, Yang X. The shared biomarkers and pathways of systemic lupus erythematosus and metabolic syndrome analyzed by bioinformatics combining machine learning algorithm and single-cell sequencing analysis. Front Immunol. 2022;13:1015882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Younes ST, Showmaker K, Johnson AC, Garrett MR, Ryan MJ. Single cell RNA sequencing reveals ferritin as a key mediator of autoimmune pre-disposition in a mouse model of systemic lupus erythematosus. Sci Rep. 2021;11:24245.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Daha NA, Toes RE. Rheumatoid arthritis: are ACPA-positive and ACPA-negative RA the same disease? Nat Rev Rheumatol. 2011;7:202–3.

    Article  PubMed  Google Scholar 

  57. Kuo D, Ding J, Cohn IS, Zhang F, Wei K, Rao DA, et al. HBEGF(+) macrophages in rheumatoid arthritis induce fibroblast invasiveness. Sci Transl Med. 2019;11:eaau8587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mandelin AM 2nd, Homan PJ, Shaffer AM, Cuda CM, Dominguez ST, Bacalao E, et al. Transcriptional profiling of synovial macrophages using minimally invasive ultrasound-guided synovial biopsies in rheumatoid arthritis. Arthritis Rheumatol. 2018;70:841–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Zhang F, Wei K, Slowikowski K, Fonseka CY, Rao DA, Kelly S, et al. Defining inflammatory cell states in rheumatoid arthritis joint synovial tissues by integrating single-cell transcriptomics and mass cytometry. Nat Immunol. 2019;20:928–42.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kelly S, Humby F, Filer A, Ng N, Di Cicco M, Hands RE, et al. Ultrasound-guided synovial biopsy: a safe, well-tolerated and reliable technique for obtaining high-quality synovial tissue from both large and small joints in early arthritis patients. Ann Rheum Dis. 2015;74:611–7.

    Article  CAS  PubMed  Google Scholar 

  61. Kelkka T, Savola P, Bhattacharya D, Huuhtanen J, Lönnberg T, Kankainen M, et al. Adult-onset anti-citrullinated peptide antibody-negative destructive rheumatoid arthritis is characterized by a disease-specific CD8+ T Lymphocyte Signature. Front Immunol. 2020;11:578848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Auger I, Balandraud N, Rak J, Lambert N, Martin M, Roudier J. New autoantigens in rheumatoid arthritis (RA): screening 8268 protein arrays with sera from patients with RA. Ann Rheum Dis. 2009;68:591–4.

    Article  CAS  PubMed  Google Scholar 

  63. Han L, Tu S, Shen P, Yan J, Huang Y, Ba X, et al. A comprehensive transcriptomic analysis of alternate interferon signaling pathways in peripheral blood mononuclear cells in rheumatoid arthritis. Aging (Albany NY). 2021;13:20511–33.

    Article  CAS  PubMed  Google Scholar 

  64. Chen YJ, Cheng PL, Huang WN, Chen HH, Chen HW, Chen JP, et al. Single-cell RNA sequencing to decipher the immunogenicity of ChAdOx1 nCoV-19/AZD1222 and mRNA-1273 vaccines in patients with autoimmune rheumatic diseases. Front Immunol. 2022;13:920865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wu X, Liu Y, Jin S, Wang M, Jiao Y, Yang B, et al. Single-cell sequencing of immune cells from anticitrullinated peptide antibody positive and negative rheumatoid arthritis. Nat Commun. 2021;12:4977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Argyriou A, Wadsworth MH 2nd, Lendvai A, Christensen SM, Hensvold AH, Gerstner C, et al. Single cell sequencing identifies clonally expanded synovial CD4(+) T(PH) cells expressing GPR56 in rheumatoid arthritis. Nat Commun. 2022;13:4046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pap T, Dankbar B, Wehmeyer C, Korb-Pap A, Sherwood J. Synovial fibroblasts and articular tissue remodelling: role and mechanisms. Semin Cell Dev Biol. 2020;101:140–5.

    Article  CAS  PubMed  Google Scholar 

  68. Tsuchiya H, Ota M, Fujio K. Multiomics landscape of synovial fibroblasts in rheumatoid arthritis. Inflamm Regen. 2021;41:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Xiao J, Cai X, Wang R, Zhou W, Ye Z. Identification of synovial fibroblast-associated neuropeptide genes and m6A factors in rheumatoid arthritis using single-cell analysis and machine learning. Dis Markers. 2022;2022:5114697.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chen N, Fan B, He Z, Yu X, Wang J. Identification of HBEGF+ fibroblasts in the remission of rheumatoid arthritis by integrating single-cell RNA sequencing datasets and bulk RNA sequencing datasets. Arthritis Res Ther. 2022;24:215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Derakhshani A, Asadzadeh Z, Baradaran B, Safarpour H, Rahmani S, Leone P, et al. The expression pattern of VISTA in the PBMCs of relapsing-remitting multiple sclerosis patients: a single-cell RNA sequencing-based study. Biomed Pharmacother. 2022;148:112725.

    Article  CAS  PubMed  Google Scholar 

  72. Lindeman I, Polak J, Qiao SW, Holmøy T, Høglund RA, Vartdal F, et al. Stereotyped B-cell responses are linked to IgG constant region polymorphisms in multiple sclerosis. Eur J Immunol. 2022;52:550–65.

    Article  CAS  PubMed  Google Scholar 

  73. Straeten F, Zhu J, Börsch AL, Zhang B, Li K, Lu IN, et al. Integrated single-cell transcriptomics of cerebrospinal fluid cells in treatment-naïve multiple sclerosis. J Neuroinflammation. 2022;19:306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dorrier CE, Aran D, Haenelt EA, Sheehy RN, Hoi KK, Pintarić L, et al. CNS fibroblasts form a fibrotic scar in response to immune cell infiltration. Nat Neurosci. 2021;24:234–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Pandey S, Shen K, Lee SH, Shen YA, Wang Y, Otero-García M, et al. Disease-associated oligodendrocyte responses across neurodegenerative diseases. Cell Rep. 2022;40:111189.

    Article  CAS  PubMed  Google Scholar 

  76. O’Connell P, Blake MK, Godbehere S, Aldhamen YA, Amalfitano A. Absence of ERAP1 in B cells increases susceptibility to central nervous system autoimmunity, alters B Cell Biology, and Mechanistically explains genetic associations between ERAP1 and multiple sclerosis. J Immunol. 2021;207:2952–65.

    Article  PubMed  Google Scholar 

  77. Shemer A, Scheyltjens I, Frumer GR, Kim JS, Grozovski J, Ayanaw S, et al. Interleukin-10 prevents pathological microglia hyperactivation following peripheral endotoxin challenge. Immunity. 2020;53:1033–49.e1037.

    Article  CAS  PubMed  Google Scholar 

  78. Madan R, Demircik F, Surianarayanan S, Allen JL, Divanovic S, Trompette A, et al. Nonredundant roles for B cell-derived IL-10 in immune counter-regulation. J Immunol. 2009;183:2312–20.

    Article  CAS  PubMed  Google Scholar 

  79. Lobo-Silva D, Carriche GM, Castro AG, Roque S, Saraiva M. Balancing the immune response in the brain: IL-10 and its regulation. J Neuroinflammation. 2016;13:297.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol. 2012;32:23–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Brown CY, Lagnado CA, Vadas MA, Goodall GJ. Differential regulation of the stability of cytokine mRNAs in lipopolysaccharide-activated blood monocytes in response to interleukin-10. J Biol Chem. 1996;271:20108–12.

    Article  CAS  PubMed  Google Scholar 

  82. Zhang X, Majlessi L, Deriaud E, Leclerc C, Lo-Man R. Coactivation of Syk kinase and MyD88 adaptor protein pathways by bacteria promotes regulatory properties of neutrophils. Immunity. 2009;31:761–71.

    Article  CAS  PubMed  Google Scholar 

  83. Miedema A, Gerrits E, Brouwer N, Jiang Q, Kracht L, Meijer M, et al. Brain macrophages acquire distinct transcriptomes in multiple sclerosis lesions and normal appearing white matter. Acta Neuropathol Commun. 2022;10:8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Voigt A, Bohn K, Sukumaran S, Stewart CM, Bhattacharya I, Nguyen CQ. Unique glandular ex-vivo Th1 and Th17 receptor motifs in Sjögren’s syndrome patients using single-cell analysis. Clin Immunol. 2018;192:58–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hong X, Meng S, Tang D, Wang T, Ding L, Yu H, et al. Single-Cell RNA sequencing reveals the expansion of cytotoxic CD4(+) T lymphocytes and a landscape of immune cells in primary Sjögren’s syndrome. Front Immunol. 2020;11:594658.

    Article  CAS  PubMed  Google Scholar 

  86. Liu J, Gao H, Li C, Zhu F, Wang M, Xu Y, et al. Expression and regulatory characteristics of peripheral blood immune cells in primary Sjögren’s syndrome patients using single-cell transcriptomic. iScience. 2022;25:105509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hou X, Hong X, Ou M, Meng S, Wang T, Liao S, et al. Analysis of gene expression and TCR/B cell receptor profiling of immune cells in primary Sjögren’s syndrome by single-cell sequencing. J Immunol. 2022;209:238–49.

    Article  CAS  PubMed  Google Scholar 

  88. He Y, Chen R, Zhang M, Wang B, Liao Z, Shi G, et al. Abnormal changes of monocyte subsets in patients with Sjögren’s syndrome. Front Immunol. 2022;13:864920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lindor KD, Bowlus CL, Boyer J, Levy C, Mayo M. Primary Biliary Cholangitis: 2018 practice guidance from the American Association for the study of Liver Diseases. Hepatology. 2019;69:394–419.

    Article  PubMed  Google Scholar 

  90. Purohit T, Cappell MS. Primary biliary cirrhosis: pathophysiology, clinical presentation and therapy. World J Hepatol. 2015;7:926–41.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Han Y, Bian ZH, Yang SY, Wang CB, Li L, Yang YQ, et al. Single-cell characterization of hepatic CD8(+) T cells in a murine model of primary biliary cholangitis. Front Immunol. 2022;13:860311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Xiang B, Deng C, Qiu F, Li J, Li S, Zhang H, et al. Single cell sequencing analysis identifies genetics-modulated ORMDL3(+) cholangiocytes having higher metabolic effects on primary biliary cholangitis. J Nanobiotechnol. 2021;19:406.

    Article  CAS  Google Scholar 

  93. Valdes-Socin H, Leclercq P, Polus M, Rohmer V, Beckers A, Louis E. Chronic autoimmune gastritis : a multidisciplinary management. Rev Med Liege. 2019;74:598–605.

    CAS  PubMed  Google Scholar 

  94. Bockerstett KA, Petersen CP, Noto CN, Kuehm LM, Wong CF, Ford EL, et al. Interleukin 27 protects from gastric atrophy and metaplasia during chronic autoimmune gastritis. Cell Mol Gastroenterol Hepatol. 2020;10:561–79.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Mahmud N, Stashek K, Katona BW, Tondon R, Shroff SG, Roses R, et al. The incidence of neoplasia in patients with autoimmune metaplastic atrophic gastritis: a renewed call for surveillance. Ann Gastroenterol. 2019;32:67–72.

    PubMed  Google Scholar 

  96. Noto CN, Hoft SG, Bockerstett KA, Jackson NM, Ford EL, Vest LS, et al. IL13 acts directly on gastric epithelial cells to promote metaplasia development during chronic gastritis. Cell Mol Gastroenterol Hepatol. 2022;13:623–42.

    Article  CAS  PubMed  Google Scholar 

  97. Komori A. Recent updates on the management of autoimmune hepatitis. Clin Mol Hepatol. 2021;27:58–69.

    Article  PubMed  Google Scholar 

  98. Cannon AS, Holloman BL, Wilson K, Miranda K, Dopkins N, Nagarkatti P, et al. AhR activation leads to attenuation of murine autoimmune hepatitis: single-cell RNA-Seq analysis reveals unique immune cell phenotypes and gene expression changes in the liver. Front Immunol. 2022;13:899609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang H, Feng X, Yan W, Tian D. Regulatory T cells in autoimmune hepatitis: unveiling their roles in mouse models and patients. Front Immunol. 2020;11:575572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Longnecker MP, Michalek JE. Serum dioxin level in relation to diabetes mellitus among Air Force veterans with background levels of exposure. Epidemiology. 2000;11:44–48.

    Article  CAS  PubMed  Google Scholar 

  101. Ibrahim M, MacFarlane EM, Matteo G, Hoyeck MP, Rick KRC, Farokhi S, et al. Functional cytochrome P450 1A enzymes are induced in mouse and human islets following pollutant exposure. Diabetologia. 2020;63:162–78.

    Article  CAS  PubMed  Google Scholar 

  102. He J, Shen J, Luo W, Han Z, Xie F, Pang T, et al. Research progress on application of single-cell TCR/BCR sequencing technology to the tumor immune microenvironment, autoimmune diseases, and infectious diseases. Front Immunol. 2022;13:969808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Perez RK, Gordon MG, Subramaniam M, Kim MC, Hartoularos GC, Targ S, et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science. 2022;376:eabf1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (82101877), Central Government Guided Local Science and Technology Development Project (Gui Ke AD20238021), Guilin Science Research and Technology Development Project (20210218-2), Innovation Project of Guangxi Graduate Education (JGY2021140), Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation(2023KF006, 3030302213), and Guangxi Medical and health key cultivation discipline construction project.

Author information

Authors and Affiliations

Authors

Contributions

HXL, YXL are responsible for conceptualizing and writing the paper; LZY, ZJN, WGY are responsible for collecting and organizing materials; all authors participated in the analysis and discussion of article revisions and approved the final paper.

Corresponding author

Correspondence to Xianliang Hou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Hou, X., Zhang, J. et al. Research progress on the application of single-cell sequencing in autoimmune diseases. Genes Immun 24, 220–235 (2023). https://doi.org/10.1038/s41435-023-00216-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-023-00216-9

Search

Quick links