Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Protective association of HLA-DPB1*04:01:01 with acute encephalopathy with biphasic seizures and late reduced diffusion identified by HLA imputation

Abstract

Acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) is a severe syndrome of acute encephalopathy that affects infants and young children. AESD is a polygenic disorder preceded by common viral infections with high fever. We conducted an association study of human leukocyte antigen (HLA) regions with AESD using HLA imputation. SNP genotyping was performed on 254 Japanese patients with AESD and 799 healthy controls. We conducted 3-field HLA imputation for 14 HLA genes based on Japanese-specific references using data from our previous genome-wide association study. After quality control, 208 patients and 737 controls were included in the analysis of HLA alleles. We then compared the carrier frequencies of HLA alleles and haplotypes between the patients and controls. HLA-DPB1*04:01:01 showed a significant association with AESD, exerting a protective effect against the disease (p = 0.0053, pcorrected = 0.042, odds ratio = 0.43, 95% confidence interval = 0.21–0.80). The allele frequency of HLA-DPB1*04:01:01 was lower in East Asians than in Caucasians, which may partially account for the higher incidence of AESD in the Japanese population. The present results demonstrate the importance of fine-mapping of the HLA region to investigate disease susceptibilities and elucidate the pathogenesis of AESD.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Regional plot around the HLA region in the discovery GWAS for AESD.

Similar content being viewed by others

References

  1. Mizuguchi M, Yamanouchi H, Ichiyama T, Shiomi M. Acute encephalopathy associated with influenza and other viral infections. Acta Neurol. 2007;115:45–56.

    Article  CAS  Google Scholar 

  2. Takanashi J, Oba H, Barkovich AJ, Tada H, Tanabe Y, Yamanouchi H, et al. Diffusion MRI abnormalities after prolonged febrile seizures with encephalopathy. Neurology. 2006;66:1304–9.

    Article  CAS  PubMed  Google Scholar 

  3. Shinohara M, Saitoh M, Takanashi J, Yamanouchi H, Kubota M, Goto T, et al. Carnitine palmitoyl transferase II polymorphism is associated with multiple syndromes of acute encephalopathy with various infectious diseases. Brain Dev. 2011;33:512–7.

    Article  PubMed  Google Scholar 

  4. Shibata A, Kasai M, Hoshino A, Miyagawa T, Matsumoto H, Yamanaka G, et al. Thermolabile polymorphism of carnitine palmitoyltransferase 2: a genetic risk factor of overall acute encephalopathy. Brain Dev. 2019;41:862–9.

    Article  PubMed  Google Scholar 

  5. Shinohara M, Saitoh M, Nishizawa D, Ikeda K, Hirose S, Takanashi J, et al. ADORA2A polymorphism predisposes children to encephalopathy with febrile status epilepticus. Neurology. 2013;80:1571–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saitoh M, Ishii A, Ihara Y, Hoshino A, Terashima H, Kubota M, et al. Missense mutations in sodium channel SCN1A and SCN2A predispose children to encephalopathy with severe febrile seizures. Epilepsy Res. 2015;117:1–6.

    Article  CAS  PubMed  Google Scholar 

  7. Shibata A, Kasai M, Terashima H, Hoshino A, Miyagawa T, Kikuchi K, et al. Case-control association study of rare nonsynonymous variants of SCN1A and KCNQ2 in acute encephalopathy with biphasic seizures and late reduced diffusion. J Neurol Sci. 2020;414:116808.

    Article  CAS  PubMed  Google Scholar 

  8. Kasai M, Omae Y, Kawai Y, Shibata A, Hoshino A, Mizuguchi M, et al. GWAS identifies candidate susceptibility loci and microRNA biomarkers for acute encephalopathy with biphasic seizures and late reduced diffusion. Sci Rep. 2022;12:1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hoshino A, Saitoh M, Miyagawa T, Kubota M, Takanashi J, Miyamoto A, et al. Specific HLA genotypes confer susceptibility to acute necrotizing encephalopathy. Genes Immun. 2016;17:367–9.

    Article  CAS  PubMed  Google Scholar 

  10. Seo H-E, Hwang S-K, Choe BH, Cho M-H, Park S-P, Kwon S. Clinical spectrum and prognostic factors of acute necrotizing encephalopathy in children. J Korean Med Sci. 2010;25:449–53.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hoshino A, Saitoh M, Oka A, Okumura A, Kubota M, Saito Y, et al. Epidemiology of acute encephalopathy in Japan, with emphasis on the association of viruses and syndromes. Brain Dev. 2012;34:337–43.

    Article  PubMed  Google Scholar 

  12. Kasai M, Shibata A, Hoshino A, Maegaki Y, Yamanouchi H, Takanashi J, et al. Epidemiological changes of acute encephalopathy in Japan based on national surveillance for 2014–2017. Brain Dev. 2020;42:508–14.

    Article  PubMed  Google Scholar 

  13. Kawahara Y, Morimoto A, Oh Y, Furukawa R, Wakabayashi K, Monden Y, et al. Serum and cerebrospinal fluid cytokines in children with acute encephalopathy. Brain Dev. 2020;42:185–91.

    Article  PubMed  Google Scholar 

  14. Ichiyama T, Suenaga N, Kajimoto M, Tohyama J, Isumi H, Kubota M, et al. Serum and CSF levels of cytokines in acute encephalopathy following prolonged febrile seizures. Brain Dev. 2008;30:47–52.

    Article  PubMed  Google Scholar 

  15. McCluskey J, Peh CA. The human leucocyte antigens and clinical medicine: an overview. Rev Immunogenet. 1999;1:3–20.

    CAS  PubMed  Google Scholar 

  16. Tokunaga K. Lessons from genome-wide search for disease-related genes with special reference to HLA-disease associations. Genes. 2014;5:84–96.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Khor SS, Yang W, Kawashima M, Kamitsuji S, Zheng X, Nishida N, et al. High-accuracy imputation for HLA class I and II genes based on high-resolution SNP data of population-specific references. Pharmacogenomics J. 2015;15:530–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nishida N, Ohashi J, Sugiyama M, Tsuchiura T, YamamotoK, Hino K, et al. Effects of HLA-DPB1 genotypes on chronic hepatitis B infection in Japanese individuals. Tissue Antigens. 2015;86:406–12.

    Article  CAS  PubMed  Google Scholar 

  19. Kamatani Y, Wattanapokayakit S, Ochi H, Kawaguchi T, Takahashi A, Hosono N, et al. A genome-wide association study identifies variants in the HLA-DP locus associated with chronic hepatitis B in Asians. Nat Genet. 2009;41:591–5.

    Article  CAS  PubMed  Google Scholar 

  20. König R, Huang LY, Germain R. MHC class II interaction with CD4 mediated by a region analogous to the MHC class I binding site for CD8. Nature. 1992;356:796–8.

    Article  PubMed  Google Scholar 

  21. Swain SL, McKinstry KK, Strutt TM. Expanding roles for CD4+ T cells in immunity to viruses. Nat Rev Immunol. 2012;12:136–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kaech SM, Cui W. Transcriptional control of effector and memory CD8+T cell differentiation. Nat Rev Immunol. 2012;12:749–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nabbout R, Vezzani A, Dulac O, Chiron C. Acute encephalopathy with inflammation-mediated status epilepticus. Lancet Neurol. 2011;10:99–108.

    Article  PubMed  Google Scholar 

  24. Hu S, Sheng WS, Ehrlich LC, Peterson PK, Chao CC. Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation. 2000;7:153–9.

    Article  CAS  PubMed  Google Scholar 

  25. Takanashi J, Tada H, Terada H, Barkovich AJ. Excitotoxicity in acute encephalopathy with biphasic seizures and late reduced diffusion. AJNR Am J Neuroradiol. 2009;30:132–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kawashima M, Ohashi J, Nishida N, Tokunaga K. Evolutionary analysis of classical HLA class I and II genes suggests that recent positive selection acted on DPB1*04:01 in Japanese population. PLoS One. 2012;7:e46806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mack S. A gene feature enumeration approach for describing HLA allele polymorphism. Hum Immunol. 2015;76:975–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parham P, Ohta T. Population biology of antigen presentation by MHC class I molecules. Science. 1996;272:67–74.

    Article  CAS  PubMed  Google Scholar 

  29. Wang H, Cui Z, Pei Z, Fang S, Chen S, Zhu L, et al. Risk HLA class II alleles and amino acid residues in myeloperoxidase–ANCA-associated vasculitis. Kidney Int. 2019;96:1010–9.

    Article  CAS  PubMed  Google Scholar 

  30. Nakatani K, Ueta M, Khor S-S, Hitomi Y, Okudaira Y, Masuya A, et al. Identification of HLA-A*02:06:01 as the primary disease susceptibility HLA allele in cold medicine-related Stevens-Johnson syndrome with severe ocular complications by high-resolution NGS-based HLA typing. Sci Rep. 2019;9:16240.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Lind A, Akel O, Wallenius M, Ramelius A, Maziarz M, Zhao LP, et al. HLA high-resolution typing by next-generation sequencing in Pandemrix-induced narcolepsy. PLoS One. 2019;14:e0222882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kawai Y, Mimori T, Kojima K, Nariai N, Danjoh I, Saito R, et al. Japonica array: improved genotype imputation by designing a population-specific SNP array with 1070 Japanese individuals. J Hum Genet. 2015;60:581–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Anderson CA, Pettersson FH, Clarke GM, Cardon LR, Morris AP, Zondervan KT. Data quality control in genetic case-control association studies. Nat Protoc. 2010;5:1564–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zheng X, Shen J, Cox C, Wakefield JC, Ehm MG, Nelson MR, et al. HIBAG-HLA genotype imputation with attribute bagging. Pharmacogenomics J. 2014;14:192–200.

    Article  CAS  PubMed  Google Scholar 

  35. Pappas DJ, Marin W, Hollenbach JA, Mack SJ. Bridging immunoGenomic data analysis workflow gaps (BIGDAWG): An integrated case-control analysis pipeline. Hum Immunol. 2016;77:283–7.

    Article  CAS  PubMed  Google Scholar 

  36. Long JC, Williams RC, Urbanek M. An E-M algorithm and testing strategy for multiple-locus haplotypes. Am J Hum Genet. 1995;56:799–810.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. González-Galarza FF, Takeshita LY, Santos EJ, Kempson F, Maia MH, da Silva AL, et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Res. 2015;43:D784–8.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Ms. Aya Shoda for her technical assistance and to the Collaborative Research Supporting Committee of the Japanese Society of Child Neurology for promoting this study. We wish to thank all the pediatricians for providing patient samples, and the patients and their parents for participating in this study.

Funding

This research was supported by a Grant-in-Aid for Scientific Research, No. 15H04872, from the Japan Society for the Promotion of Science, and a Grant-in-Aid for Policy Research for Intractable Diseases, No. H30-Nanchi-Ippan-007, from the National Institute of Public Health, Japan.

Author information

Authors and Affiliations

Authors

Contributions

MK performed genotyping, conducted statistical analyses, and wrote the original draft; AH and MM collected samples; YO, KS-S, AS, AH, MM, and KT contributed to the materials and methods of the research and reviewed the manuscript; MM and KT conceived this study.

Corresponding author

Correspondence to Mariko Kasai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kasai, M., Omae, Y., Khor, SS. et al. Protective association of HLA-DPB1*04:01:01 with acute encephalopathy with biphasic seizures and late reduced diffusion identified by HLA imputation. Genes Immun 23, 123–128 (2022). https://doi.org/10.1038/s41435-022-00170-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-022-00170-y

Search

Quick links