Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Extra-adrenal glucocorticoid synthesis at epithelial barriers

Abstract

Epithelial barriers play an important role in the exchange of nutrients, gases, and other signals between our body and the outside world. However, they protect it also from invasion by potential pathogens. Defective epithelial barriers and associated overshooting immune responses are the basis of many different inflammatory disorders of the skin, the lung, and the intestinal mucosa. The anti-inflammatory activity of glucocorticoids has been efficiently used for the treatment of these diseases. Interestingly, epithelia in these tissues are also a rich source of endogenous glucocorticoids, suggesting that local glucocorticoid synthesis is part of a tissue-specific regulatory circuit. In this review, we summarize current knowledge about the extra-adrenal glucocorticoid synthesis at the epithelial barriers of the intestine, lung and the skin, and discuss their relevance in the pathogenesis of inflammatory diseases and as therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The glucocorticoid synthesis pathway.
Fig. 2: Stimulation and regulation of extra-adrenal glucocorticoid synthesis.

Similar content being viewed by others

References

  1. McKay LI, Cidlowski JA. Cross-talk between nuclear factor-κB and the steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol. 1998. https://doi.org/10.1210/mend.12.1.0044.

  2. Ray A, Prefontaine KE. Physical association and functional antagonism between the p65 subunit of transcription factor NF-kappa B and the glucocorticoid receptor. Proc Natl Acad Sci. 1994. https://doi.org/10.1073/pnas.91.2.752.

  3. Yang-Yen HF, Chambard JC, Sun YL, Smeal T, Schmidt TJ, Drouin J, et al. Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein–protein interaction. Cell. 1990;62:1205–15.

    Article  CAS  PubMed  Google Scholar 

  4. Diamond MI, Miner JN, Yoshinaga SK, Yamamoto KR. Transcription factor interactions: selectors of positive or negative regulation from a single DNA element. Science. 1990;249:1266–72.

    Article  CAS  PubMed  Google Scholar 

  5. Erlacher M, Michalak EM, Kelly PN, Labi V, Niederegger H, Coultas L, et al. BH3-only proteins Puma and Bim are rate-limiting for gamma-radiation- and glucocorticoid-induced apoptosis of lymphoid cells in vivo. Blood. 2005;106:4131–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boldizsar F, Talaber G, Szabo M, Bartis D, Palinkas L, Nemeth P, et al. Emerging pathways of non-genomic glucocorticoid (GC) signalling in T cells. Immunobiology. 2010;215:521–6.

    Article  CAS  PubMed  Google Scholar 

  7. Turnbull AV, Rivier CL. Regulation of the hypothalamic–pituitary–adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev. 1999;79:1–71.

    Article  CAS  PubMed  Google Scholar 

  8. Honma S. The mammalian circadian system: a hierarchical multi-oscillator structure for generating circadian rhythm. J Physiol Sci. 2018;68:207–19.

    Article  PubMed  Google Scholar 

  9. Schibler U, Gotic I, Saini C, Gos P, Curie T, Emmenegger Y, et al. Clock-talk: interactions between central and peripheral circadian oscillators in mammals. Cold Spring Harb Symp Quant Biol. 2016;80:223–32.

    Article  Google Scholar 

  10. Kalsbeek A, van der Spek R, Lei J, Endert E, Buijs RM, Fliers E. Circadian rhythms in the hypothalamo–pituitary–adrenal (HPA) axis. Mol Cell Endocrinol. 2012;349:20–29.

    Article  CAS  PubMed  Google Scholar 

  11. Pon LA, Hartigan JA, Orme-Johnson NR. Acute ACTH regulation of adrenal corticosteroid biosynthesis. Rapid accumulation of a phosphoprotein. J Biol Chem. 1986;261:13309–16.

    CAS  PubMed  Google Scholar 

  12. Clark BJ, Soo SC, Caron KM, Ikeda Y, Parker KL, Stocco DM. Hormonal and developmental regulation of the steroidogenic acute regulatory protein. Mol Endocrinol. 1995;9:1346–55.

    CAS  PubMed  Google Scholar 

  13. Arakane F, King SR, Du Y, Kallen CB, Walsh LP, Stocco DM, et al. Phosphorylation of steroidogenic acute regulatory protein (StAR) modulates its steroidogenic activity. J Biol Chem. 1997;272:32656–62.

    Article  CAS  PubMed  Google Scholar 

  14. Ruggiero C, Lalli E. Impact of ACTH signaling on transcriptional regulation of steroidogenic genes. Front Endocrinol. 2016;7:24.

    Article  Google Scholar 

  15. Parker KL, Rice Da, Lala DS, Ikeda Y, Luo X, Wong M, et al. Steroidogenic factor 1: an essential mediator of endocrine development. Recent Prog Horm Res. 2002;57:19–36.

    Article  CAS  PubMed  Google Scholar 

  16. Parker KL. The roles of steroidogenic factor 1 in endocrine development and function. Mol Cell Endocrinol. 1998;145:15–20.

    Article  CAS  PubMed  Google Scholar 

  17. Parker KL, Ikeda Y, Luo X. The roles of steroidogenic factor-1 in reproductive function. Steroids. 1996;61:161–5.

    Article  CAS  PubMed  Google Scholar 

  18. Wang XL, Bassett M, Zhang Y, Su Y, Clyne C, White PC, et al. Transcriptional regulation of human 11β-hydroxylase (hCYP11B1). Endocrinology. 2000;1:3587–94.

    Article  Google Scholar 

  19. Rice DA, Aitken LD, Vandenbark GR, Mouw AR, Franklin A, Schimmer BP, et al. A cAMP-responsive element regulates expression of the mouse steroid 11β-hydroxylase gene. J Biol Chem. 1989;264:14011–5.

    CAS  PubMed  Google Scholar 

  20. Talabér G, Jondal M, Okret S. Extra-adrenal glucocorticoid synthesis: immune regulation and aspects on local organ homeostasis. Mol Cell Endocrinol. 2013;380:89–98.

    Article  CAS  PubMed  Google Scholar 

  21. Hostettler N, Bianchi P, Gennari-Moser C, Kassahn D, Schoonjans K, Corazza N, et al. Local glucocorticoid production in the mouse lung is induced by immune cell stimulation. Allergy. 2012;67:227–34.

    Article  CAS  PubMed  Google Scholar 

  22. Mittelstadt PR, Taves MD, Ashwell JD. Cutting edge: de novo glucocorticoid synthesis by thymic epithelial cells regulates antigen-specific thymocyte selection. J Immunol. 2018;200:1988–94.

    Article  CAS  PubMed  Google Scholar 

  23. Cima I, Corazza N, Dick B, Fuhrer A, Herren S, Jakob S, et al. Intestinal epithelial cells synthesize glucocorticoids and regulate T cell activation. J Exp Med. 2004;200:1635–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Noti M, Corazza N, Tuffin G, Schoonjans K, Brunner T. Lipopolysaccharide induces intestinal glucocorticoid synthesis in a TNFalpha-dependent manner. FASEB J. 2010;24:1340–6.

    Article  CAS  PubMed  Google Scholar 

  25. Noti M, Corazza N, Mueller C, Berger B, Brunner T. TNF suppresses acute intestinal inflammation by inducing local glucocorticoid synthesis. J Exp Med. 2010;207:1057–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mueller M, Atanasov A, Cima I, Corazza N, Schoonjans K, Brunner T. Differential regulation of glucocorticoid synthesis in murine intestinal epithelial versus adrenocortical cell lines. Endocrinology. 2007;148:1445–53.

    Article  CAS  PubMed  Google Scholar 

  27. Mueller M, Cima I, Noti M, Fuhrer A, Jakob S, Dubuquoy L, et al. The nuclear receptor LRH-1 critically regulates extra-adrenal glucocorticoid synthesis in the intestine. J Exp Med. 2006;203:2057–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Coste A, Dubuquoy L, Barnouin R, Annicotte J-S, Magnier B, Notti M, et al. LRH-1-mediated glucocorticoid synthesis in enterocytes protects against inflammatory bowel disease. Proc Natl Acad Sci. 2007;104:13098–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Botrugno OA, Fayard E, Annicotte JS, Haby C, Brennan T, Wendling O, et al. Synergy between LRH-1 and β-catenin Induces G1cyclin-mediated cell proliferation. Mol Cell. 2004;15:499–509.

    Article  CAS  PubMed  Google Scholar 

  30. Bayrer JR, Wang H, Nattiv R, Suzawa M, Escusa HS, Fletterick RJ, et al. LRH-1 mitigates intestinal inflammatory disease by maintaining epithelial homeostasis and cell survival. Nat Commun. 2018;9:4055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Delgado ME, Grabinger T, Brunner T. Cell death at the intestinal epithelial front line. FEBS J. 2016;384:2701–19.

    Article  CAS  Google Scholar 

  32. Huang J, Jia R, Brunner T. Local synthesis of immunosuppressive glucocorticoids in the intestinal epithelium regulates anti-viral immune responses. Cell Immunol. 2018;334:1–10.

    Article  CAS  PubMed  Google Scholar 

  33. Cintolo M. Mucosal healing in inflammatory bowel disease: maintain or de-escalate therapy. World J Gastrointest Pathophysiol. 2016;7:1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Dubuquoy L, Å Jansson E, Deeb S, Rakotobe S, Karoui M, Colombel JF, et al. Impaired expression of peroxisome proliferator-activated receptor γin ulcerative colitis. Gastroenterology. 2003;124:1265–76.

    Article  CAS  PubMed  Google Scholar 

  35. Tomashefski JF, Farver CF. Anatomy and histology of the lung. In: Tomashefski JF Jr., Cagle PT, Farver CF FA (arg). Dail and Hammar’s Pulmonary Pathology. New York, NY: Springer; 2008. p. 20–48.

  36. Kato A, Schleimer RP. Beyond inflammation: airway epithelial cells are at the interface of innate and adaptive immunity. Curr Opin Immunol. 2007;19:711–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taylor KM, Ray DW, Sommer P. Glucocorticoid receptors in lung cancer: new perspectives. J Endocrinol. 2016;229:R17–R28.

    Article  CAS  PubMed  Google Scholar 

  38. Bolt RJ, Weissenbruch MM, Van, Lafeber HN. Glucocorticoids and lung development in the fetus and preterm infant. Pediatr Pulmonol. 2001;91:76–91.

    Article  Google Scholar 

  39. Nkadi PO, Merritt TA, Pillers DAM. An overview of pulmonary surfactant in the neonate: genetics, metabolism, and the role of surfactant in health and disease. Mol Genet Metab. 2009;97:95–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pazirandeh A, Xue Y, Rafter I, Sjövall J, Jondal MOS. Paracrine glucocorticoid activity produced by mouse thymic epithelial cells. FASEB J. 1999;13:893–901.

    Article  CAS  PubMed  Google Scholar 

  41. Provost PR, Tremblay Y. Genes involved in the glucocorticoid synthesis are transiently expressed in the developing lung. Endocrinology. 2005;146:2239–45.

    Article  CAS  PubMed  Google Scholar 

  42. Nishimura M, Naito S, Yokoi T. Tissue­specific mRNA expression profiles of human nuclear receptor subfamilies. Drug Metab Pharm. 2004;19:135–49.

    Article  CAS  Google Scholar 

  43. Bird AD, Mcdougall ARA, Seow B, Hooper SB, Cole TJ. Glucocorticoid regulation of lung development: lessons learned from conditional GR knockout mice. Mol Endocrinol. 2015;29:158–71.

    Article  CAS  PubMed  Google Scholar 

  44. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972;50:515–25.

    CAS  PubMed  Google Scholar 

  45. Chalmers JD, Poole C, Webster S, Tebboth A, Dickinson S, Gayle A. Assessing the healthcare resource use associated with inappropriate prescribing of inhaled corticosteroids for people with chronic obstructive pulmonary disease (COPD) in GOLD groups A or B: an observational study using the Clinical Practice Research Data. Respir Res. 2018;19:1–9.

    Article  Google Scholar 

  46. Heijink IH, Nawijn MC, Hackett TL. Airway epithelial barrier function regulates the pathogenesis of allergic asthma. Clin Exp Allergy. 2014;44:620–30.

    Article  CAS  PubMed  Google Scholar 

  47. Gon Y, Hashimoto S. Role of airway epithelial barrier dysfunction in pathogenesis of asthma. Allergol Int. 2018;67:12–17.

    Article  CAS  PubMed  Google Scholar 

  48. Hackett TL, Singhera GK, Shaheen F, Hayden P, Jackson GR, Hegele RG, et al. Intrinsic phenotypic differences of asthmatic epithelium and its inflammatory responses to respiratory syncytial virus and air pollution. Am J Respir Cell Mol Biol. 2011;45:1090–1100.

    Article  CAS  PubMed  Google Scholar 

  49. Jiang Z, Zhu L. Update on molecular mechanisms of corticosteroid resistance in chronic obstructive pulmonary disease. Pulm Pharmacol Ther. 2016;37:1–8.

    Article  CAS  PubMed  Google Scholar 

  50. Slominski A, Baker J, Ermak G, Chakraborty A, Pawelek J. Ultraviolet B stimulates production of corticotropin releasing factor (CRF) by human melanocytes. FEBS Lett. 1996;399:175–6.

    Article  CAS  PubMed  Google Scholar 

  51. Slominski a, Gomez-Sanchez CE, Foecking MF, Wortsman J. Active steroidogenesis in the normal rat skin. Biochim Biophys Acta. 2000;1474:1–4.

    Article  CAS  PubMed  Google Scholar 

  52. Vukelic S, Stojadinovic O, Pastar I, Rabach M, Krzyzanowska A, Lebrun E, et al. Cortisol synthesis in epidermis is induced by IL-1 and tissue injury. J Biol Chem. 2011;286:10265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hannen RF, Michael AE, Jaulim A, Bhogal R, Burrin JM, Philpott MP. Steroid synthesis by primary human keratinocytes; implications for skin disease. Biochem Biophys Res Commun. 2011;404:62–7.

    Article  CAS  PubMed  Google Scholar 

  54. Hannen R, Udeh-Momoh C, Upton J, Wright M, Michael A, Gulati A, et al. Dysfunctional skin-derived glucocorticoid synthesis is a pathogenic mechanism of psoriasis. J Invest Dermatol. 2017;137:1630–7.

    Article  CAS  PubMed  Google Scholar 

  55. Ermak G, Slominski A. Production of POMC, CRH-R1, MC1, and MC2 receptor mRNA and expression of tyrosinase gene in relation to hair cycle and dexamethasone treatment in the C57BL/6 mouse skin. J Invest Dermatol. 1997;108:160–5.

    Article  CAS  PubMed  Google Scholar 

  56. Slominski A, Ermak G, Mazurkiewicz JE, Baker JWJ. Characterization of corticotropin-releasing hormone (CRH) in human skin. J Clin Endocrinol Metab. 1998;83:1020–4.

    CAS  PubMed  Google Scholar 

  57. Slominski AT, Zmijewski MA, Zbytek B, Tobin DJ, Theoharides TC, Rivier J. Key role of CRF in the skin stress response system. Endocr Rev. 2013;34:827–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Skobowiat C, Slominski AT. UVB activates hypothalamic-pituitary-adrenal axis in C57BL/6 mice. J Invest Dermatol. 2015;135:1638–48.

    Article  CAS  PubMed  Google Scholar 

  59. Slominski A, Wortsman J, Luger T, Paus R, Solomon S. Corticotropin releasing hormone and proopiomelanocortin involvement in the cutaneous response to stress. Physiol Rev. 2000;80:979–1020.

    Article  CAS  PubMed  Google Scholar 

  60. Slominski AT, Manna PR, Tuckey RC. On the role of skin in the regulation of local and systemic steroidogenic activities. Steroids. 2015;103:72–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Slominski A, Zbytek B, Nikolakis G, Manna PR, Skobowiat C, Zmijewski M, et al. Steroidogenesis in the skin: implications for local immune functions. J Steroid Biochem Mol Biol. 2013;137:107–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Cirillo N, Prime SS. Keratinocytes synthesize and activate cortisol. J Cell Biochem. 2011;112:1499–505.

    Article  CAS  PubMed  Google Scholar 

  63. Thiboutot D, Jabara S, McAllister JM, Sivarajah A, Gilliland K, Cong Z, et al. Human skin is a steroidogenic tissue: steroidogenic enzymes and cofactors are expressed in epidermis, normal sebocytes, and an immortalized sebocyte cell line (SEB-1). J Invest Dermatol. 2003;120:905–14.

    Article  CAS  PubMed  Google Scholar 

  64. Patel MV, McKay IA, Burrin JM. Transcriptional regulators of steroidogenesis, DAX-1 and SF-1, are expressed in human skin. J Invest Dermatol. 2001;117:1559–65.

    Article  CAS  PubMed  Google Scholar 

  65. Slominski A, Zjawiony J, Wortsman J, Semak I, Stewart J, Pisarchik A, et al. A novel pathway for sequential transformation of 7-dehydrocholesterol and expression of the P450scc system in mammalian skin. Eur J Biochem. 2004;271:4178–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Zmijewski MA, Slominski AT. Neuroendocrinology of the skin: an overview and selective analysis. Dermatoendocrinol. 2011;3:3–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Slominski AT, Kim T-K, Li W, Yi A-K, Postlethwaite A, Tuckey RC. The role of CYP11A1 in the production of vitamin D metabolites and their role in the regulation of epidermal functions. J Steroid Biochem Mol Biol. 2014;144:28–39.

    Article  CAS  PubMed  Google Scholar 

  68. Elder JT. Genome-wide association scan yields new insights into the immunopathogenesis of psoriasis. Genes Immun. 2009;10:201–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Liu Y, Krueger JG, Bowcock AM. Psoriasis: genetic associations and immune system changes. Genes Immun. 2007;8:1–12.

    Article  CAS  PubMed  Google Scholar 

  70. Garcia VE, Chang M, Brandon R, Li Y, Matsunami N, Callis-Duffin KP, et al. Detailed genetic characterization of the interleukin-23 receptor in psoriasis. Genes Immun. 2008;9:546–55.

    Article  CAS  PubMed  Google Scholar 

  71. Kulig P, Musiol S, Freiberger SN, Schreiner B, Gyülveszi G, Russo G, et al. IL-12 protects from psoriasiform skin inflammation. Nat Commun. 2016;7:13466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sevilla LM, Pérez P. Roles of the glucocorticoid and mineralocorticoid receptors in skin pathophysiology. Int J Mol Sci. 2018;19:1906.

    Article  CAS  PubMed Central  Google Scholar 

  73. Whirledge S, DeFranco DB. Glucocorticoid signaling in health and disease: Insights from tissue-specific GR knockout mice. Endocrinology. 2018;159:46–61.

    Article  PubMed  Google Scholar 

  74. Sevilla LM, Latorre V, Sanchis A, Pérez P. Epidermal inactivation of the glucocorticoid receptor triggers skin barrier defects and cutaneous inflammation. J Invest Dermatol. 2013;133:361–70.

    Article  CAS  PubMed  Google Scholar 

  75. Boix J, Carceller E, Sevilla LM, Marcos-Garcés V, Pérez P. The mineralocorticoid receptor plays a transient role in mouse skin development. Exp Dermatol. 2016;25:69–71.

    Article  PubMed  Google Scholar 

  76. Bigas J, Sevilla LM, Carceller E, Boix J, Pérez P. Epidermal glucocorticoid and mineralocorticoid receptors act cooperatively to regulate epidermal development and counteract skin inflammation article. Cell Death Dis. 2018;9:588.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Krutmann J, Morita A. Mechanisms of ultraviolet (UV) B and UVA phototherapy. J Investig Dermatol Symp Proc. 1999;4:70–2.

    Article  CAS  PubMed  Google Scholar 

  78. Walker D, Jacobe H. Phototherapy in the age of biologics. Semin Cutan Med Surg. 2011;30:190–8.

    Article  CAS  PubMed  Google Scholar 

  79. Pavel S. Light therapy (with UVA-1) for SLE patients: is it a good or bad idea? Rheumatology. 2006;45:653–5.

    Article  CAS  PubMed  Google Scholar 

  80. Uva L, Miguel D, Pinheiro C, Antunes J, Cruz D, Ferreira J, et al. Mechanisms of action of topical corticosteroids in psoriasis. Int J Endocrinol. 2012;2012:561018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Papp KA, Guenther L, Boyden B, Grønhøj Larsen F, Harvima RJ, Guilhou JJ, et al. Early onset of action and efficacy of a combination of calcipotriene and betamethasone dipropionate in the treatment of psoriasis. J Am Acad Dermatol. 2003;48:48–54.

    Article  PubMed  Google Scholar 

  82. Devaux S, Castela A, Archier E, Gallini A, Joly P, Misery L, et al. Topical vitamin D analogues alone or in association with topical steroids for psoriasis: a systematic review. J Eur Acad Dermatol Venereol. 2012;26:52–60.

    Article  CAS  PubMed  Google Scholar 

  83. Fleming C, Ganslandt C, Guenther L, Johannesson A, Buckley C, Simon JC, et al. Calcipotriol plus betamethasone dipropionate gel compared with its active components in the same vehicle and the vehicle alone in the treatment of psoriasis vulgaris: a randomised, parallel group, double-blind, exploratory study. Eur J Dermatol. 2010;20:465–71.

    CAS  PubMed  Google Scholar 

  84. Menter A, Korman NJ, Elmets CA, Feldman SR, Gelfand JM, Gordon KB, et al. Guidelines of care for the management of psoriasis and psoriatic arthritis. J Am Acad Dermatol. 2009;61:451–85.

    Article  CAS  PubMed  Google Scholar 

  85. Zhang Y, Leung DYM, Goleva E. Vitamin D enhances glucocorticoid action in human monocytes: Involvement of granulocyte–macrophage colony-stimulating factor and mediator complex subunit 14. J Biol Chem. 2013;288:14544–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hidalgo AA, Trump DL, Johnson CS. Glucocorticoid regulation of the vitamin D receptor. J Steroid Biochem Mol Biol. 2010;121:372–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Cutolo M, Paolino S, Sulli A, Smith V, Pizzorni C, Seriolo B. Vitamin D, steroid hormones, and autoimmunity. Ann N Y Acad Sci. 2014;1317:39–46.

    Article  CAS  PubMed  Google Scholar 

  88. Taves MD, Hamden JE, Soma KK. Local glucocorticoid production in lymphoid organs of mice and birds: Functions in lymphocyte development. Horm Behav. 2017;88:4–14.

    Article  CAS  PubMed  Google Scholar 

  89. Kostadinova FI, Hostettler N, Bianchi P, Brunner T. Extra-adrenal glucocorticoid synthesis in mucosal tissues and its implication in mucosal immune homeostasis and tumor development. In: Qian X (Ed.). In Glucocorticoids—New Recognition of Our Familiar Friend; 2012.

  90. Kostadinova F, Schwaderer J, Sebeo V, Brunner T. Why does the gut synthesize glucocorticoids? Ann Med. 2014;46:490–7.

    Article  CAS  PubMed  Google Scholar 

  91. Hong SN, Joung JG, Bae JS, Lee CS, Koo JS, Park SJ, et al. RNA-seq reveals transcriptomic differences in inflamed and noninflamed intestinal mucosa of Crohn’s disease patients compared with normal mucosa of healthy controls. Inflamm Bowel Dis. 2017;23:1098–108.

    Article  PubMed  Google Scholar 

  92. Hussey M, Holleran G, Smith S, Sherlock M, McNamara D. The role and regulation of the 11 beta-hydroxysteroid dehydrogenase enzyme system in patients with inflammatory bowel disease. Dig Dis Sci. 2017;62:3385–90.

    Article  CAS  PubMed  Google Scholar 

  93. Stegk JP, Ebert B, Martin HJ, Maser E. Expression profiles of human 11β-hydroxysteroid dehydrogenases type 1 and type 2 in inflammatory bowel diseases. Mol Cell Endocrinol. 2009;301:104–8.

    Article  CAS  PubMed  Google Scholar 

  94. Terao M, Katayama I. Local cortisol/corticosterone activation in skin physiology and pathology. J Dermatol Sci. 2016;84:11–16.

    Article  CAS  PubMed  Google Scholar 

  95. Terao M, Itoi S, Matsumura S, Yang L, Murota H, Katayama I. Local glucocorticoid activation by 11b-hydroxysteroid dehydrogenase 1 in keratinocytes the role in hapten-induced dermatitis. Am J Pathol. 2016;186:1499–510.

    Article  CAS  PubMed  Google Scholar 

  96. Itoi-Ochi S, Terao M, Murota H, Katayama I. Local corticosterone activation by 11β-hydroxysteroid dehydrogenase 1 in keratinocytes: the role in narrow-band UVB-induced dermatitis. Dermatoendocrinol. 2016;8:1–12.

    Article  CAS  Google Scholar 

  97. Murota H, Itoi S, Terao M, Matsui S, Kawai H, Satou Y, et al. Topical cholesterol treatment ameliorates hapten-evoked cutaneous hypersensitivity by sustaining expression of 11b-HSD1 in epidermis. Exp Dermatol. 2014;23:68–70.

    Article  CAS  PubMed  Google Scholar 

  98. Terao M, Murota H, Kimura A, Kato A, Ishikawa A, Igawa K, et al. 11b-Hydroxysteroid dehydrogenase-1 Is a novel regulator of skin homeostasis and a candidate target for promoting tissue repair. PLoS ONE. 2011;6:1–11.

    Google Scholar 

  99. Clarke L, Kirwan J. Efficacy, safety and mechanism of action of modified-release prednisone in rheumatoid arthritis. Ther Adv Musculoskelet Dis. 2012;4:159–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Buttgereit F. Novel glucocorticoids and glucocorticoid receptor ligands: teaching old drugs new tricks. Ann Rheum Dis. 2014;73:41.

    Article  Google Scholar 

  101. Ursini F, Naty S, Bruno C, Grembiale RD. Old but good: modified-release prednisone in rheumatoid arthritis. Rev Recent Clin Trials. 2017;12:124–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors greatly appreciate all scientific discussions with colleagues in the field of extra-adrenal glucocorticoid synthesis and nuclear receptors over the past 20 years, which contributed to this review. This work was supported by a research grant from the German Science Foundation (DFG, BR3369/9-1) to TB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Brunner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phan, T.S., Merk, V.M. & Brunner, T. Extra-adrenal glucocorticoid synthesis at epithelial barriers. Genes Immun 20, 627–640 (2019). https://doi.org/10.1038/s41435-019-0058-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-019-0058-z

This article is cited by

Search

Quick links