Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Citrobacter rodentium alters the mouse colonic miRNome

Abstract

Citrobacter rodentium is a murine pathogen causing transmissible colonic hyperplasia and colitis with a pathogenic mechanism similar to foodborne enterohaemorrhagic Escherichia coli in humans. Mechanisms underlying intestinal responses to C. rodentium infection are incompletely understood. We identified 24 colonic microRNAs (miRNAs) as significantly deregulated in response to C. rodentium, including miR-7a, -17, -19a, -20a, -20b, -92a, -106a, -132, -200a, and -2137; most of these miRNAs belong to the oncogenic miR-17-92 clusters. Pathways involved in cell cycle, cancers, and immune responses were enriched among the predicted targets of these miRNAs. We further demonstrated that an apoptosis facilitator, Bim, is a candidate gene target of miRNA-mediated host response to the infection. These findings suggest that host miRNAs participate in C. rodentium pathogenesis and may represent novel treatment targets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mayer CL, Leibowitz CS, Kurosawa S, Stearns-Kurosawa DJ. Shiga toxins and the pathophysiology of hemolytic uremic syndrome in humans and animals. Toxins. 2012;4:1261–87.

    Article  CAS  Google Scholar 

  2. Collins JW, Keeney KM, Crepin VF, Rathinam VA, Fitzgerald KA, Finlay BB, et al. Citrobacter rodentium: infection, inflammation and the microbiota. Nat Rev Microbiol. 2014;12:612–23.

    Article  CAS  Google Scholar 

  3. Borenshtein D, Fry RC, Groff EB, Nambiar PR, Carey VJ, Fox JG, et al. Diarrhea as a cause of mortality in a mouse model of infectious colitis. Genome Biol. 2008;9:R122.

    Article  Google Scholar 

  4. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article  CAS  Google Scholar 

  5. Archambaud C, Sismeiro O, Toedling J, Soubigou G, Becavin C, Lechat P, et al. The intestinal microbiota interferes with the microRNA response upon oral Listeria infection. mBio. 2013;4:e00707–13.

    Article  Google Scholar 

  6. Schulte LN, Eulalio A, Mollenkopf HJ, Reinhardt R, Vogel J. Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family. EMBO J. 2011;30:1977–89.

    Article  CAS  Google Scholar 

  7. Kaakoush NO, Deshpande NP, Man SM, Burgos-Portugal JA, Khattak FA, Raftery MJ, et al. Transcriptomic and proteomic analyses reveal key innate immune signatures in the host response to the gastrointestinal pathogen Campylobacter concisus. Infect Immun. 2015;83:832–45.

    Article  Google Scholar 

  8. Chandrakesan P, Jakkula LU, Ahmed I, Roy B, Anant S, Umar S. Differential effects of beta-catenin and NF-kappaB interplay in the regulation of cell proliferation, inflammation and tumorigenesis in response to bacterial infection. PLoS ONE. 2013;8:e79432.

    Article  Google Scholar 

  9. Roy BC, Subramaniam D, Ahmed I, Jala VR, Hester CM, Greiner KA, et al. Role of bacterial infection in the epigenetic regulation of Wnt antagonist WIF1 by PRC2 protein EZH2. Oncogene. 2015;34:4519–30.

    Article  CAS  Google Scholar 

  10. Brabletz S, Brabletz T. The ZEB/miR-200 feedback loop--a motor of cellular plasticity in development and cancer? EMBO Rep. 2010;11:670–7.

    Article  CAS  Google Scholar 

  11. Matsushima K, Isomoto H, Inoue N, Nakayama T, Hayashi T, Nakayama M, et al. MicroRNA signatures in Helicobacter pylori-infected gastric mucosa. Int J Cancer. 2011;128:361–70.

    Article  CAS  Google Scholar 

  12. Zhang T, Yu J, Zhang Y, Li L, Chen Y, Li D, et al. Salmonella enterica serovar enteritidis modulates intestinal epithelial miR-128 levels to decrease macrophage recruitment via macrophage colony-stimulating factor. J Infect Dis. 2014;209:2000–11.

    Article  CAS  Google Scholar 

  13. Li L, Shi QG, Lin F, Liang YG, Sun LJ, Mu JS, et al. Cytokine IL-6 is required in Citrobacter rodentium infection-induced intestinal Th17 responses and promotes IL-22 expression in inflammatory bowel disease. Mol Med Rep. 2014;9:831–6.

    Article  CAS  Google Scholar 

  14. Clare S, John V, Walker AW, Hill JL, Abreu-Goodger C, Hale C, et al. Enhanced susceptibility to Citrobacter rodentium infection in microRNA-155-deficient mice. Infect Immun. 2013;81:723–32.

    Article  CAS  Google Scholar 

  15. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, et al. A microRNA polycistron as a potential human oncogene. Nature. 2005;435:828–33.

    Article  CAS  Google Scholar 

  16. Li Y, Lauriola M, Kim D, Francesconi M, D’Uva G, Shibata D, et al. Adenomatous polyposis coli (APC) regulates miR17-92 cluster through beta-catenin pathway in colorectal cancer. Oncogene. 2016;35:4558–68.

    Article  CAS  Google Scholar 

  17. Tsuchida A, Ohno S, Wu W, Borjigin N, Fujita K, Aoki T, et al. miR-92 is a key oncogenic component of the miR-17-92 cluster in colon cancer. Cancer Sci. 2011;102:2264–71.

    Article  CAS  Google Scholar 

  18. Zhang Z, Wang M, Eisel F, Tchatalbachev S, Chakraborty T, Meinhardt A, et al. Uropathogenic Escherichia coli epigenetically manipulate host cell death pathways. J Infect Dis. 2016;213:1198–207.

    Article  CAS  Google Scholar 

  19. Liu SQ, Jiang S, Li C, Zhang B, Li QJ. miR-17-92 cluster targets phosphatase and tensin homology and Ikaros Family Zinc Finger 4 to promote TH17-mediated inflammation. J Biol Chem. 2014;289:12446–56.

    Article  CAS  Google Scholar 

  20. Chen WX, Ren LH, Shi RH. Implication of miRNAs for inflammatory bowel disease treatment: systematic review. World J Gastrointest Pathophysiol. 2014;5:63–70.

    Article  Google Scholar 

  21. Kim HY, Kwon HY, Ha Thi HT, Lee HJ, Kim GI, Hahm KB, et al. MicroRNA-132 and microRNA-223 control positive feedback circuit by regulating FOXO3a in inflammatory bowel disease. J Gastroenterol Hepatol. 2016;31:1727–35.

    Article  CAS  Google Scholar 

  22. Rodrigues DM, Sousa AJ, Johnson-Henry KC, Sherman PM, Gareau MG. Probiotics are effective for the prevention and treatment of citrobacter rodentium-induced colitis in mice. J Infect Dis. 2012;206:99–109.

    Article  CAS  Google Scholar 

  23. Bhinder G, Sham HP, Chan JM, Morampudi V, Jacobson K, Vallance BA. The Citrobacter rodentium mouse model: studying pathogen and host contributions to infectious colitis. J Vis Exp. 2013;72:e50222.

    Google Scholar 

  24. Glenn AJ, Fielding KA, Chen J, Comelli EM, Ward WE. Long-term vitamin D3 supplementation does not prevent colonic inflammation or modulate bone health in IL-10 knockout mice at young adulthood. Nutrients. 2014;6:3847–62.

    Article  Google Scholar 

  25. Wine E, Shen-Tu G, Gareau MG, Goldberg HA, Licht C, Ngan B-Y, et al. Osteopontin mediates Citrobacter rodentium-induced colonic epithelial cell hyperplasia and attaching-effacing lesions. Am J Pathol. 2010;177:1320–32.

    Article  CAS  Google Scholar 

  26. Kertesz M, Iovino N, Unnerstall U, Gaul U, Segal E. The role of site accessibility in microRNA target recognition. Nat Genet. 2007;39:1278–84.

    Article  CAS  Google Scholar 

  27. Rahmati S, Abovsky M, Pastrello C, Jurisica I. pathDIP: an annotated resource for known and predicted human gene-pathway associations and pathway enrichment analysis. Nucleic Acids Res. 2017;45(D1):D419–d426.

    Article  CAS  Google Scholar 

  28. Brown KR, Otasek D, Ali M, McGuffin MJ, Xie W, Devani B, et al. NAViGaTOR: network analysis, visualization and graphing toronto. Bioinformatics. 2009;25:3327–9.

    Article  CAS  Google Scholar 

  29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method. Methods. 2001;25:402–8.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC #356124) and the J. P. Bickell Foundation. Computational analysis was supported in part by NSERC (#203475), Ontario Research Fund (GL2-01-030), Canada Foundation for Innovation (CFI #225404, #30865), Canada Research Chair Program (CRC #225404), Ontario Research Fund (RE-03-020), and IBM. Elena Comelli holds the Lawson Family Chair in Microbiome Nutrition Research at the University of Toronto. Bijun Wen was partially supported by NSERC Alexander Graham Bell Canada Graduate Scholarship. NanoString service was provided by the Princess Margaret Genomics Centre, Toronto, Canada (www.pmgenomics.ca). The authors would like to thank the Division of Comparative Medicine staff at University of Toronto for help with animal care.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena M. Comelli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, B., Tokar, T., Taibi, A. et al. Citrobacter rodentium alters the mouse colonic miRNome. Genes Immun 20, 207–213 (2019). https://doi.org/10.1038/s41435-018-0026-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-018-0026-z

This article is cited by

Search

Quick links