Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Structure-based selection of human metabolite binding P4 pocket of DRB1*15:01 and DRB1*15:03, with implications for multiple sclerosis

Abstract

Binding of small molecules in the human leukocyte antigen (HLA) peptide-binding groove may result in conformational changes of bound peptide and an altered immune response, but previous studies have not considered a potential role for endogenous metabolites. We performed virtual screening of the complete Human Metabolite Database (HMDB) for docking to the multiple sclerosis (MS) susceptible DRB1*15:01 allele and compared the results to the closely related yet non-susceptible DRB1*15:03 allele; and assessed the potential impact on binding of human myelin basic peptide (MBP). We observed higher energy scores for metabolite binding to DRB1*15:01 than DRB1*15:03. Structural comparison of docked metabolites with DRB1*15:01 and DRB1*15:03 complexed with MBP revealed that PhenylalanineMBP92 allows binding of metabolites in the P4 pocket of DRB1*15:01 but ValineMBP89 abrogates metabolite binding in the P1 pocket. We observed differences in the energy scores for binding of metabolites in the P4 pockets of DRB1*15:01 vs. DRB1*15:03 suggesting stronger binding to DRB1*15:01. Our study confirmed that specific, disease-associated human metabolites bind effectively with the most polymorphic P4 pocket of DRB1*15:01, the primary MS susceptible allele in most populations. Our results suggest that endogenous human metabolites bound in specific pockets of HLA may be immunomodulatory and implicated in autoimmune disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hollenbach JA, Oksenberg JR. The immunogenetics of multiple sclerosis: A comprehensive review. J Autoimmun. 2015;64:13–25.

    Article  CAS  Google Scholar 

  2. Maiers M, Gragert L, Klitz W. High-resolution HLA alleles and haplotypes in the United States population. Hum Immunol. 2007;68:779–88.

    Article  CAS  Google Scholar 

  3. Ji N, Somanaboeina A, Dixit A, Kawamura K, Hayward NJ, Self C, et al. Small molecule inhibitor of antigen binding and presentation by HLA-DR2b as a therapeutic strategy for the treatment of multiple sclerosis. J Immunol. 2013;191:5074–84.

    Article  CAS  Google Scholar 

  4. Krogsgaard M, Wucherpfennig KW, Cannella B, Hansen BE, Svejgaard A, Pyrdol J, et al. Visualization of myelin basic protein (MBP) T cell epitopes in multiple sclerosis lesions using a monoclonal antibody specific for the human histocompatibility leukocyte antigen (HLA)-DR2-MBP 85-99 complex. J Exp Med. 2000;191:1395–412.

    Article  CAS  Google Scholar 

  5. Vergelli M, Kalbus M, Rojo SC, Hemmer B, Kalbacher H, Tranquill L, et al. T cell response to myelin basic protein in the context of the multiple sclerosis-associated HLA-DR15 haplotype: peptide binding, immunodominance and effector functions of T cells. J Neuroimmunol. 1997;77:195–203.

    Article  CAS  Google Scholar 

  6. Boes M, Ploegh HL. Translating cell biology in vitro to immunity in vivo. Nature. 2004;430:264–71.

    Article  CAS  Google Scholar 

  7. Sloan VS, Cameron P, Porter G, Gammon M, Amaya M, Mellins E, et al. Mediation by HLA-DM of dissociation of peptides from HLA-DR. Nature. 1995;375:802–6.

    Article  CAS  Google Scholar 

  8. Watts C. Antigen processing in the endocytic compartment. Curr Opin Immunol. 2001;13:26–31.

    Article  CAS  Google Scholar 

  9. Hopner S, Dickhaut K, Hofstatter M, Kramer H, Ruckerl D, Soderhall JA, et al. Small organic compounds enhance antigen loading of class II major histocompatibility complex proteins by targeting the polymorphic P1 pocket. J Biol Chem. 2006;281:38535–42.

    Article  Google Scholar 

  10. Ota K, Matsui M, Milford EL, Mackin GA, Weiner HL, Hafler DA. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature. 1990;346:183–7.

    Article  CAS  Google Scholar 

  11. Pette M, Fujita K, Wilkinson D, Altmann DM, Trowsdale J, Giegerich G, et al. Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple-sclerosis patients and healthy donors. Proc Natl Acad Sci USA. 1990;87:7968–72.

    Article  CAS  Google Scholar 

  12. Valli A, Sette A, Kappos L, Oseroff C, Sidney J, Miescher G, et al. Binding of myelin basic protein peptides to human histocompatibility leukocyte antigen class II molecules and their recognition by T cells from multiple sclerosis patients. J Clin Invest. 1993;91:616–28.

    Article  CAS  Google Scholar 

  13. Wucherpfennig KW, Sette A, Southwood S, Oseroff C, Matsui M, Strominger JL, et al. Structural requirements for binding of an immunodominant myelin basic protein peptide to DR2 isotypes and for its recognition by human T cell clones. J Exp Med. 1994;179:279–90.

    Article  CAS  Google Scholar 

  14. Smith KJ, Pyrdol J, Gauthier L, Wiley DC, Wucherpfennig KW. Crystal structure of HLA-DR2 (DRA*0101, DRB1*1501) complexed with a peptide from human myelin basic protein. J Exp Med. 1998;188:1511–20.

    Article  CAS  Google Scholar 

  15. Michels AW, Ostrov DA, Zhang L, Nakayama M, Fuse M, McDaniel K, et al. Structure-based selection of small molecules to alter allele-specific MHC class II antigen presentation. J Immunol. 2011;187:5921–30.

    Article  CAS  Google Scholar 

  16. Li CW, Menconi F, Osman R, Mezei M, Jacobson EM, Concepcion E, et al. Identifying a Small Molecule Blocking Antigen Presentation in Autoimmune Thyroiditis. J Biol Chem. 2016;291:4079–90.

    Article  CAS  Google Scholar 

  17. Illing PT, Vivian JP, Dudek NL, Kostenko L, Chen Z, Bharadwaj M, et al. Immune self-reactivity triggered by drug-modified HLA-peptide repertoire. Nature. 2012;486:554–8.

    Article  CAS  Google Scholar 

  18. Pavlos R, Mallal S, Ostrov D, Buus S, Metushi I, Peters B, et al. T cell-mediated hypersensitivity reactions to drugs. Annu Rev Med. 2015;66:439–54.

    Article  CAS  Google Scholar 

  19. Madden DR. The three-dimensional structure of peptide-MHC complexes. Annu Rev Immunol. 1995;13:587–622.

    Article  CAS  Google Scholar 

  20. Li Y, Li H, Martin R, Mariuzza RA. Structural basis for the binding of an immunodominant peptide from myelin basic protein in different registers by two HLA-DR2 proteins. J Mol Biol. 2000;304:177–88.

    Article  CAS  Google Scholar 

  21. Donia MS, Fischbach MA. HUMAN MICROBIOTA. Small molecules from the human microbiota. Science. 2015;349:1254766.

    Article  Google Scholar 

  22. Vogt AB, Kropshofer H, Kalbacher H, Kalbus M, Rammensee HG, Coligan JE, et al. Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. J Immunol. 1994;153:1665–73.

    CAS  PubMed  Google Scholar 

  23. George MF, Briggs FB, Shao X, Gianfrancesco MA, Kockum I, Harbo HF, et al. Multiple sclerosis risk loci and disease severity in 7,125 individuals from 10 studies. Neurol Genet. 2016;2:e87.

    Article  Google Scholar 

  24. Risco J, Maldonado H, Luna L, Osada J, Ruiz P, Juarez A, et al. Latitudinal prevalence gradient of multiple sclerosis in Latin America. Mult Scler. 2011;17:1055–9.

    Article  CAS  Google Scholar 

  25. Hammer J, Gallazzi F, Bono E, Karr RW, Guenot J, Valsasnini P, et al. Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J Exp Med. 1995;181:1847–55.

    Article  CAS  Google Scholar 

  26. Scharf SJ, Friedmann A, Brautbar C, Szafer F, Steinman L, Horn G, et al. HLA class II allelic variation and susceptibility to pemphigus vulgaris. Proc Natl Acad Sci USA. 1988;85:3504–8.

    Article  CAS  Google Scholar 

  27. Ahmed AR, Yunis EJ, Khatri K, Wagner R, Notani G, Awdeh Z, et al. Major histocompatibility complex haplotype studies in Ashkenazi Jewish patients with pemphigus vulgaris. Proc Natl Acad Sci USA. 1990;87:7658–62.

    Article  CAS  Google Scholar 

  28. Gregersen PK, Silver J, Winchester RJ. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis Rheum. 1987;30:1205–13.

    Article  CAS  Google Scholar 

  29. Mohan JF, Unanue ER. Unconventional recognition of peptides by T cells and the implications for autoimmunity. Nat Rev Immunol. 2012;12:721–8.

    Article  CAS  Google Scholar 

  30. Villoslada P, Alonso C, Agirrezabal I, Kotelnikova E, Zubizarreta I, Pulido-Valdeolivas I, et al. Metabolomic signatures associated with disease severity in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm. 2017;4:e321.

    Article  Google Scholar 

  31. Van Doorn R, Van Horssen J, Verzijl D, Witte M, Ronken E, Van Het Hof B, et al. Sphingosine 1-phosphate receptor 1 and 3 are upregulated in multiple sclerosis lesions. Glia. 2010;58:1465–76.

    Article  Google Scholar 

  32. Ulivelli M, Priora R, Di Giuseppe D, Coppo L, Summa D, Margaritis A, et al. Homocysteinemia control by cysteine in cerebral vascular patients after methionine loading test: evidences in physiological and pathological conditions in cerebro-vascular and multiple sclerosis patients. Amino Acids. 2016;48:1477–89.

    Article  CAS  Google Scholar 

  33. Verdin E. NAD(+) in aging, metabolism, and neurodegeneration. Science. 2015;350:1208–13.

    Article  CAS  Google Scholar 

  34. Fu C, Xu J, Li RJ, Crawford JA, Khan AB, Ma TM, et al. Inositol hexakisphosphate kinase-3 regulates the morphology and synapse formation of cerebellar purkinje cells via spectrin/adducin. J Neurosci. 2015;35:11056–67.

    Article  CAS  Google Scholar 

  35. Carvalho AN, Lim JL, Nijland PG, Witte ME, Van Horssen J. Glutathione in multiple sclerosis: more than just an antioxidant? Mult Scler. 2014;20:1425–31.

    Article  CAS  Google Scholar 

  36. Ooi JD, Petersen J, Tan YH, Huynh M, Willett ZJ, Ramarathinam SH, et al. Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells. Nature. 2017;545:243–7.

    Article  CAS  Google Scholar 

  37. van Gaalen FA, van Aken J, Huizinga TW, Schreuder GM, Breedveld FC, Zanelli E, et al. Association between HLA class II genes and autoantibodies to cyclic citrullinated peptides (CCPs) influences the severity of rheumatoid arthritis. Arthritis Rheum. 2004;50:2113–21.

    Article  Google Scholar 

  38. Irigoyen P, Lee AT, Wener MH, Li W, Kern M, Batliwalla F, et al. Regulation of anti-cyclic citrullinated peptide antibodies in rheumatoid arthritis: contrasting effects of HLA-DR3 and the shared epitope alleles. Arthritis Rheum. 2005;52:3813–8.

    Article  CAS  Google Scholar 

  39. Xue Y, Zhang J, Chen YM, Guan M, Zheng SG, Zou HJ. The HLA-DRB1 shared epitope is not associated with antibodies against cyclic citrullinated peptide in Chinese patients with rheumatoid arthritis. Scand J Rheumatol. 2008;37:183–7.

    Article  CAS  Google Scholar 

  40. Lee JC, Biasci D, Roberts R, Gearry RB, Mansfield JC, Ahmad T, et al. Genome-wide association study identifies distinct genetic contributions to prognosis and susceptibility in Crohn’s disease. Nat Genet. 2017;49:262–8.

    Article  CAS  Google Scholar 

  41. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, et al. UCSF Chimera--a visualization system for exploratory research and analysis. J Comput Chem. 2004;25:1605–12.

    Article  CAS  Google Scholar 

  42. Coleman RG, Sharp KA. Protein pockets: inventory, shape, and comparison. J Chem Inf Model. 2010;50:589–603.

    Article  CAS  Google Scholar 

  43. Irwin JJ, Shoichet BK, Mysinger MM, Huang N, Colizzi F, Wassam P, et al. Automated docking screens: a feasibility study. J Med Chem. 2009;52:5712–20.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Institutes of Health (U19NS095774, R01AI128775). The authors wish to thank Professor Jorge Oksenberg for his support and valuable comments on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jill A. Hollenbach.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Misra, M.K., Damotte, V. & Hollenbach, J.A. Structure-based selection of human metabolite binding P4 pocket of DRB1*15:01 and DRB1*15:03, with implications for multiple sclerosis. Genes Immun 20, 46–55 (2019). https://doi.org/10.1038/s41435-017-0009-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41435-017-0009-5

Search

Quick links