Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

CSTB gene replacement improves neuroinflammation, neurodegeneration and ataxia in murine type 1 progressive myoclonus epilepsy

Abstract

EPM1 is the most common form of Progressive Myoclonus Epilepsy characterized by late-childhood onset, ever-worsening and disabling myoclonus, seizures, ataxia, psychiatric disease, and shortened lifespan. EPM1 is caused by expansions of a dodecamer repeat sequence in the promoter of CSTB (cystatin B), which dramatically reduces, but does not eliminate, gene expression. The relatively late onset and consistent presence of a minimal amount of protein product makes EPM1 a favorable target for gene replacement therapy. If treated early, these children’s normally developed brains could be rescued from the neurodegeneration that otherwise follows, and their cross-reactive immunological material (CRIM) positive status greatly reduces transgene related toxicity. We performed a proof-of-concept CSTB gene replacement study in Cstb knockout mice by introducing full-length human CSTB driven by the CBh promoter packaged in AAV9 and administered at postnatal days 21 and 60. Mice were sacrificed at 2 or 9 months of age, respectively. We observed significant improvements in expression levels of neuroinflammatory pathway genes and cerebellar granule cell layer apoptosis, as well as amelioration of motor impairment. The data suggest that gene replacement is a promising therapeutic modality for EPM1 and could spare affected children and families the ravages of this otherwise severe neurodegenerative disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of study design.
Fig. 2: Human CSTB protein expression is detected in the mouse brain.
Fig. 3: CSTB expression lowers expression of early-onset neuroinflammation markers.
Fig. 4: AAV-CSTB gene replacement reduces neuronal apoptosis but does not prevent brain atrophy.
Fig. 5: The effect of AAV-CSTB gene therapy on the performance of Cstb−/− mice in the rotarod test.

Similar content being viewed by others

Data availability

All raw data used to prepare this manuscript is available upon contacting corresponding author.

References

  1. Crespel A, Ferlazzo E, Franceschetti S, Genton P, Gouider R, Kalviainen R, et al. Unverricht-Lundborg disease. Epileptic Disord. 2016;18:28–37.

    Article  PubMed  Google Scholar 

  2. Lalioti MD, Scott HS, Buresi C, Rossier C, Bottani A, Morris MA, et al. Dodecamer repeat expansion in cystatin B gene in progressive myoclonus epilepsy. Nature. 1997;386:847–51.

    Article  CAS  PubMed  Google Scholar 

  3. Joensuu T, Lehesjoki AE, Kopra O. Molecular background of EPM1-Unverricht-Lundborg disease. Epilepsia. 2008;49:557–63.

    Article  CAS  PubMed  Google Scholar 

  4. Mancini GM, Schot R, de Wit MC, de Coo RF, Oostenbrink R, Bindels-de Heus K, et al. CSTB null mutation associated with microcephaly, early developmental delay, and severe dyskinesia. Neurology. 2016;86:877–8.

    Article  PubMed  Google Scholar 

  5. O’Brien A, Marshall CR, Blaser S, Ray PN, Yoon G. Severe neurodegeneration, progressive cerebral volume loss and diffuse hypomyelination associated with a homozygous frameshift mutation in CSTB. Eur J Hum Genet. 2017;25:775–8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Di Matteo F, Pipicelli F, Kyrousi C, Tovecci I, Penna E, Crispino M, et al. Cystatin B is essential for proliferation and interneuron migration in individuals with EPM1 epilepsy. EMBO Mol Med. 2020;12:e11419.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Pennacchio LA, Bouley DM, Higgins KM, Scott MP, Noebels JL, Myers RM. Progressive ataxia, myoclonic epilepsy and cerebellar apoptosis in cystatin B-deficient mice. Nat Genet. 1998;20:251–8.

    Article  CAS  PubMed  Google Scholar 

  8. Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov. 2019;18:358–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Lykken EA, Shyng C, Edwards RJ, Rozenberg A, Gray SJ. Recent progress and considerations for AAV gene therapies targeting the central nervous system. J Neurodev Disord. 2018;10:16.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shannon P, Pennacchio LA, Houseweart MK, Minassian BA, Myers RM. Neuropathological changes in a mouse model of progressive myoclonus epilepsy: cystatin B deficiency and Unverricht-Lundborg disease. J Neuropathol Exp Neurol. 2002;61:1085–91.

    Article  PubMed  Google Scholar 

  11. Franceschetti S, Sancini G, Buzzi A, Zucchini S, Paradiso B, Magnaghi G, et al. A pathogenetic hypothesis of Unverricht-Lundborg disease onset and progression. Neurobiol Dis. 2007;25:675–85.

    Article  CAS  PubMed  Google Scholar 

  12. Husi H, Fernandes M, Skipworth RJ, Miller J, Cronshaw AD, Fearon KCH, et al. Identification of diagnostic upper gastrointestinal cancer tissue type-specific urinary biomarkers. Biomed Rep. 2019;10:165–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Tegelberg S, Kopra O, Joensuu T, Cooper JD, Lehesjoki AE. Early microglial activation precedes neuronal loss in the brain of the Cstb−/− mouse model of progressive myoclonus epilepsy, EPM1. J Neuropathol Exp Neurol. 2012;71:40–53.

    Article  CAS  PubMed  Google Scholar 

  14. Sanz P, Serratosa JM. Neuroinflammation and progressive myoclonus epilepsies: from basic science to therapeutic opportunities. Expert Rev Mol Med. 2020;22:e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Okuneva O, Korber I, Li Z, Tian L, Joensuu T, Kopra O, et al. Abnormal microglial activation in the Cstb(−/−) mouse, a model for progressive myoclonus epilepsy, EPM1. Glia. 2015;63:400–11.

    Article  PubMed  Google Scholar 

  16. Okuneva O, Li Z, Korber I, Tegelberg S, Joensuu T, Tian L, et al. Brain inflammation is accompanied by peripheral inflammation in Cstb (−/−) mice, a model for progressive myoclonus epilepsy. J Neuroinflammation. 2016;13:298.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Manninen O, Koskenkorva P, Lehtimaki KK, Hypponen J, Kononen M, Laitinen T, et al. White matter degeneration with Unverricht-Lundborg progressive myoclonus epilepsy: a translational diffusion-tensor imaging study in patients and cystatin B-deficient mice. Radiology. 2013;269:232–9.

    Article  PubMed  Google Scholar 

  18. Manninen O, Laitinen T, Lehtimaki KK, Tegelberg S, Lehesjoki AE, Grohn O, et al. Progressive volume loss and white matter degeneration in cstb-deficient mice: a diffusion tensor and longitudinal volumetry MRI study. PLoS One. 2014;9:e90709.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sipila JOT, Hypponen J, Kyto V, Kalviainen R. Unverricht-Lundborg disease (EPM1) in Finland: a nationwide population-based study. Neurology. 2020;95:e3117–e23.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Norio R, Koskiniemi M. Progressive myoclonus epilepsy: genetic and nosological aspects with special reference to 107 Finnish patients. Clin Genet. 1979;15:382–98.

    Article  CAS  PubMed  Google Scholar 

  21. Paulson H. Repeat expansion diseases. Handb Clin Neurol. 2018;147:105–23.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nitschke F, Ahonen SJ, Nitschke S, Mitra S, Minassian BA. Lafora disease - from pathogenesis to treatment strategies. Nat Rev Neurol. 2018;14:606–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alakurtti K, Weber E, Rinne R, Theil G, de Haan GJ, Lindhout D, et al. Loss of lysosomal association of cystatin B proteins representing progressive myoclonus epilepsy, EPM1, mutations. Eur J Hum Genet. 2005;13:208–15.

    Article  CAS  PubMed  Google Scholar 

  24. Zerovnik E. Human stefin B: from its structure, folding, and aggregation to its function in health and disease. Front Mol Neurosci. 2022;15:1009976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kopitar-Jerala N. The role of stefin B in neuro-inflammation. Front Cell Neurosci. 2015;9:458.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Penna E, Cerciello A, Chambery A, Russo R, Cernilogar FM, Pedone EM, et al. Cystatin B involvement in synapse physiology of rodent brains and human cerebral organoids. Front Mol Neurosci. 2019;12:195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Daura E, Tegelberg S, Yoshihara M, Jackson C, Simonetti F, Aksentjeff K, et al. Cystatin B-deficiency triggers ectopic histone H3 tail cleavage during neurogenesis. Neurobiol Dis. 2021;156:105418.

    Article  CAS  PubMed  Google Scholar 

  28. Xu TT, Zeng XW, Wang XH, Yang LX, Luo G, Yu T. Cystatin-B negatively regulates the malignant characteristics of oral squamous cell carcinoma possibly via the epithelium proliferation/differentiation program. Front Oncol. 2021;11:707066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lehtinen MK, Tegelberg S, Schipper H, Su H, Zukor H, Manninen O, et al. Cystatin B deficiency sensitizes neurons to oxidative stress in progressive myoclonus epilepsy, EPM1. J Neurosci. 2009;29:5910–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ceru S, Konjar S, Maher K, Repnik U, Krizaj I, Bencina M, et al. Stefin B interacts with histones and cathepsin L in the nucleus. J Biol Chem. 2010;285:10078–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chakrabarty P, Rosario A, Cruz P, Siemienski Z, Ceballos-Diaz C, Crosby K, et al. Capsid serotype and timing of injection determines AAV transduction in the neonatal mice brain. PLoS One. 2013;8:e67680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hollidge BS, Carroll HB, Qian R, Fuller ML, Giles AR, Mercer AC, et al. Kinetics and durability of transgene expression after intrastriatal injection of AAV9 vectors. Front Neurol. 2022;13:1051559.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zincarelli C, Soltys S, Rengo G, Rabinowitz JE. Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther. 2008;16:1073–80.

    Article  CAS  PubMed  Google Scholar 

  34. Reimsnider S, Manfredsson FP, Muzyczka N, Mandel RJ. Time course of transgene expression after intrastriatal pseudotyped rAAV2/1, rAAV2/2, rAAV2/5, and rAAV2/8 transduction in the rat. Mol Ther. 2007;15:1504–11.

    Article  CAS  PubMed  Google Scholar 

  35. Chew NK, Mir P, Edwards MJ, Cordivari C, Martino D, Schneider SA, et al. The natural history of Unverricht-Lundborg disease: a report of eight genetically proven cases. Mov Disord. 2008;23:107–13.

    Article  PubMed  Google Scholar 

  36. Magaudda A, Ferlazzo E, Nguyen VH, Genton P. Unverricht-Lundborg disease, a condition with self-limited progression: long-term follow-up of 20 patients. Epilepsia. 2006;47:860–6.

    Article  PubMed  Google Scholar 

  37. Eldridge R, Iivanainen M, Stern R, Koerber T, Wilder BJ. “Baltic” myoclonus epilepsy: hereditary disorder of childhood made worse by phenytoin. Lancet. 1983;2:838–42.

    Article  CAS  PubMed  Google Scholar 

  38. Iivanainen M, Eldridge R. Effect of phenytoin on the mental and physical function of patients with Baltic myoclonus epilepsy. Ital J Neurol Sci. 1987;8:313–7.

    Article  CAS  PubMed  Google Scholar 

  39. Clement N, Grieger JC. Manufacturing of recombinant adeno-associated viral vectors for clinical trials. Mol Ther Methods Clin Dev. 2016;3:16002.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Gray SJ, Choi VW, Asokan A, Haberman RA, McCown TJ, Samulski RJ. Production of recombinant adeno-associated viral vectors and use in in vitro and in vivo administration. Curr Protoc Neurosci. 2011;Chapter 4:Unit 4 17.

    PubMed  Google Scholar 

  41. Sheehan DC, Hrapchak BB. Theory and practice of histotechnology, 2nd ed. Mosby; 1980.

  42. Woods AEAE, Roy C. Laboratory histopathology, a complete reference. Churchill-Livingston Press; 1996.

  43. Shelton JM, Grauer G, Richardson JA. Combination low magnification dark-field illuminator and bright-field microscopy substage condenser with descriptions and modifications to manufacture this device from commercially available fiber-optic ring lights, UTSD: 1494. 2003. http://www.utsouthwestern.edu/labs/molecular-pathology/about/intellectualproperty/utsd1494.html.

  44. Gavrieli Y, Sherman Y, Ben-Sasson SA. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 1992;119:493–501.

    Article  CAS  PubMed  Google Scholar 

  45. Promega Technical Bulletin 235 (TB235). Instruction Booklet for Use of Product G3250. Madison WI, USA: Promega Corporation; 2008.

Download references

Acknowledgements

This work was funded by Ultragenyx and Hope for ULD. We thank the UT Southwestern Histopathology (Dr. John Shelton), Whole Brain Microscopy (Dr. Denise Ramirez), Rodent Behavior core (Dr. Shari Birnbaum) and Neuro-Models facility (Dr. Erik Plautz) for assistance with tissue processing, imaging, the rotarod test and video-electrocorticography, respectively. BAM holds the University of Texas Southwestern Jimmy Elizabeth Westcott Chair in Pediatric Neurology.

Author information

Authors and Affiliations

Authors

Contributions

BAM and EG designed the project. BAM wrote the manuscript. EG, SK, and MV conducted the experiments, analyzed the data, and helped write the manuscript. DVA, UM, and XC helped in parts of experiments. SFM, AL, and SJG provided feedback and reviewed the manuscript. BAM supervised the project.

Corresponding author

Correspondence to Berge A. Minassian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gumusgoz, E., Kasiri, S., Verma, M. et al. CSTB gene replacement improves neuroinflammation, neurodegeneration and ataxia in murine type 1 progressive myoclonus epilepsy. Gene Ther (2023). https://doi.org/10.1038/s41434-023-00433-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41434-023-00433-x

Search

Quick links