Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

p53 dry gene powder enhances anti-cancer effects of chemotherapy against malignant pleural mesothelioma

Subjects

Abstract

Dry gene powder is a novel non-viral gene-delivery system, which is inhalable with high gene expression. Previously, we showed that the transfection of p16INK4a or TP53 by dry gene powder resulted in growth inhibitions of lung cancer and malignant pleural mesothelioma (MPM) in vitro and in vivo. Here, we report that dry gene powder containing p53- expression-plasmid DNA enhanced the therapeutic effects of cisplatin (CDDP) against MPM even in the presence of endogenous p53. Furthermore, our results indicated that the safe transfection with a higher plasmid DNA (pDNA) concentration suppressed MPM growth independently of chemotherapeutic agents. To develop a new therapeutic alternative for MPM patients without safety concerns over “vector doses”, our in vitro data provide basic understandings for dry gene powder.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The effects of p53-SFD in combination with CDDP or PEM on AB1 cell viability and cell cycle.
Fig. 2: The effect of lipofection or 2% p53-SFD on AB1 cell viability.
Fig. 3: The effect of different pDNA concentrations of p53-SFD under CDDP treatment on NCI-H2052 cell viability.
Fig. 4: The apoptosis of p53-SFD with CDDP in NCI-H2052.
Fig. 5: The cell cycle of p53-SFD with CDDP in NCI-H2052.
Fig. 6: Summary of the growth-inhibition mechanism of p53-SFD and CDDP in AB1 and NCI-H2052.

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Vogelzang NJ, Rusthoven JJ, Symanowski J, Denham C, Kaukel E, Ruffie P, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol. 2003;21:2636–44.

    Article  CAS  PubMed  Google Scholar 

  2. Mnohar S, Leung N. Cisplatin nephrotoxicity: a review of the literature. J Nephrol. 2018;31:15–25.

    Article  Google Scholar 

  3. Rocha CRR, Silva MM, Quinet A, Cabral-Neto JB, Menck CFM. DNA repair pathways and cisplatin resistance: an intimate relationship. Clinics 2018;73:e478s.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Xu C, Hu Y, Chen B, Li D, Liang R, Shen M, et al. Metastasis-associated gene 1 (MTA1) enhances cisplatin resistance of malignant pleural mesothelioma by ATR-Chk1-mediated DNA repair. Ann Transl Med. 2021;9:670.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Giuliano M, Catalano A, Strizzi L, Vianale G, Capogrossi M, Procopio A. Adenovirus-mediated wild-type p53 over-expression reverts tumourigenicity of human mesothelioma cells. Int J Mol Med. 2000;5:591–6.

    CAS  PubMed  Google Scholar 

  6. Li Q, Kawamura K, Yamanaka M, Okamoto S, Yang S, Yamauchi S, et al. Upregulated p53 expression activates apoptotic pathways in wild-type p53-bearing mesothelioma and enhances cytotoxicity of cisplatin and pemetrexed. Cancer Gene Ther. 2012;19:218–28.

    Article  CAS  PubMed  Google Scholar 

  7. Mohri K, Okuda T, Mori A, Danjo K, Okamoto H. Optimized pulmonary gene transfection in mice by spray–freeze dried powder inhalation. J Control Release. 2010;144:221–6.

    Article  CAS  PubMed  Google Scholar 

  8. Mizuno T, Mohri K, Nasu S, Danjo K, Okamoto H. Dual imaging of pulmonary delivery and gene expression of dry powder inhalant by fluorescence and bioluminescence. J Control Release. 2009;134:149–54.

    Article  CAS  PubMed  Google Scholar 

  9. Ito T, Okuda T, Takashima Y, Okamoto H. Naked pDNA inhalation powder composed of hyaluronic acid exhibits high gene expression in the lungs. Mol Pharm. 2019;16:489–97.

    Article  CAS  PubMed  Google Scholar 

  10. Asai A, Okuda T, Sonoda E, Yamauchi T, Kato S, Okamoto H. Drug permeation characterization of inhaled dry powder formulations in air-liquid interfaced cell layer using an improved, simple apparatus for dispersion. Pharm. Res. 2016;33:487–97.

    Article  CAS  PubMed  Google Scholar 

  11. Ito T, Okuda T, Takayama R, Okamoto H. Establishment of an evaluation method for gene silencing by serial pulmonary administration of siRNA and pDNA powders: naked siRNA inhalation powder suppresses luciferase gene expression in the lung. J Pharm Sci. 2019;108:2661–7.

    Article  CAS  PubMed  Google Scholar 

  12. Goodison S, Urquidi V, Tarin D. CD44 cell adhesion molecules. Mol Pathol. 1999;52:189–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim E, Yang J, Park J, Kim S, Kim NH, et al. Consecutive targetable smart nanoprobe for molecular recognition of cytoplasmic microRNA in metastatic breast cancer. ACS Nano. 2012;6:8525–35.

    Article  CAS  PubMed  Google Scholar 

  14. Zöller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 2011;11:254–67.

    Article  PubMed  Google Scholar 

  15. Attanoos RL, Dallimore NS, Gibbs AR. Primary epithelioid haemangioendothelioma of the peritoneum: an unusual mimic of diffuse malignant mesothelioma. Histopathology. 1997;30:375–7.

    Article  CAS  PubMed  Google Scholar 

  16. Stefano ID, Battaglia A, Zannoni GF, Prisco MG, Fattorossi A, Travaglia D, et al. Hyaluronic acid-paclitaxel: effects of intraperitoneal administration against CD44(+) human ovarian cancer xenografts. Cancer Chemother Pharmacol. 2011;68:107–16.

    Article  CAS  PubMed  Google Scholar 

  17. Bassi PF, Volpe A, D’Agostino D, Palermo G, Renier D, Franchini S, et al. Paclitaxel-hyaluronic acid for intravesical therapy of Bacillus Calmette-Guérin refractory carcinoma in situ of the bladder: results of a phase I study. J Urol. 2011;185:445–9.

    Article  CAS  PubMed  Google Scholar 

  18. Ito T, Fukuhara M, Okuda T, Okamoto H. Naked pDNA/hyaluronic acid powder shows excellent long-term storage stability and gene expression in murine lungs. Int J Pharm. 2020;574:118880.

    Article  CAS  PubMed  Google Scholar 

  19. Ichikawa M, Muramatsu N, Matsunaga W, Ishikawa T, Okuda T, Okamoto H, et al. Effects of inhalable gene transfection as a novel gene therapy for non-small cell lung cancer and malignant pleural mesothelioma. Sci Rep. 2022;12:1–8.

    Article  Google Scholar 

  20. Guo G, Chmielecki J, Goparaju C, Heguy A, Dolgalev I, Carbone M, et al. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Pass Cancer Res. 2015;75:264–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kadam P, Bhalerao S. Sample size calculation. Int J Ayurveda Res. 2010;1:55–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Davis MR, Manning LS, Whitaker D, Garlepp MJ, Robinson BW. Establishment of a murine model of malignant mesothelioma. Int J Cancer. 1992;52:881–6.

    Article  CAS  PubMed  Google Scholar 

  23. Wahlbuhl E, Liehr T, Rincic M, Azawi S. Cytogenomic characterization of three murine malignant mesothelioma tumor cell lines. Mol Cytogenet. 2020;13:43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Taira N, Nihira K, Yamaguchi T, Miki Y, Yoshida K. DYRK2 is targeted to the nucleus and controls p53 via Ser46 phosphorylation in the apoptotic response to DNA damage. Mol Cell. 2007;25:725–38.

    Article  CAS  PubMed  Google Scholar 

  25. Olsson A, Manzl C, Strasser A, Villunger A. How important are posttranslational modifications in p53 for selectivity in target-gene transcription and tumour suppression? Cell Death Differ. 2007;14:1561–75.

    Article  CAS  PubMed  Google Scholar 

  26. Cecchinelli B, Porrello A, Lazzari C, Gradi A, Bossi G, D’Angelo M, et al. Ser58 of mouse p53 is the homologue of human Ser46 and is phosphorylated by HIPK2 in apoptosis. Cell Death Differ. 2006;13:1994–7.

    Article  CAS  PubMed  Google Scholar 

  27. Xia Y, Li X, Sun W. Applications of recombinant adenovirus-p53 gene therapy for cancers in the clinic in China. Curr Gene Ther. 2020;20:127–41.

    Article  CAS  PubMed  Google Scholar 

  28. Hosmani J, Mushtaq S, Abullais SS, Almubarak HM, Assiri K, Testarelli L, et al. Recombinant human adenovirus-p53 therapy for the treatment of oral leukoplakia and oral squamous cell carcinoma: a systematic review. Medicina. 2021;57:438.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Zhang W, Li L, Li D, Liu J, Li X, Li W, et al. The first approved gene therapy product for cancer Ad-p53(Gendicine):12 years in the clinic. Hum Gene Ther. 2018;29:160–79.

    Article  CAS  PubMed  ADS  Google Scholar 

  30. Keeler AM, Flotte TR. Recombinant adeno-associated virus gene therapy in light of Luxturna (and Zolgensma and Glybera): where are we, and how did we get here? Annu Rev Virol. 2019;6:601–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu Z, Asokan A, Samulski RJ. Adeno-associated virus serotypes: vector toolkit for human gene therapy. Mol Ther. 2006;14:316–27.

    Article  CAS  PubMed  Google Scholar 

  32. Teschendorf C, Emons B, Muzyczka N, Graeven U, Schmiegel W. Efficacy of recombinant adeno-associated viral vectors serotypes 1, 2, and 5 for the transduction of pancreatic and colon carcinoma cells. Anticancer Res. 2010;30:1931–5.

    CAS  PubMed  Google Scholar 

  33. Melissa AK, Schaffer DV. Engineering adeno-associated viruses for clinical gene therapy. Nat Rev Genet. 2014;15:445–51.

    Article  Google Scholar 

  34. Li Y, Guo W, Li X, Zhang J, Sun M, Tang Z, et al. Expert consensus on the clinical application of recombinant adenovirus human p53 for head and neck cancers. Int J Oral Sci. 2021;13:38.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fujiwara T, Tanaka N, Kanazawa S, Ohtani S, Saijo Y, Nukiwa T, et al. Multicenter phase I study of repeated intratumoral delivery of adenoviral p53 in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2006;24:1689–99.

    Article  CAS  PubMed  Google Scholar 

  36. Mendell JR, Al-Zaidy SA, Louise R, Rodino-Klapac LR, Goodspeed K, Gray SJ, et al. Current clinical applications of in vivo gene therapy with AAVs. Mol Ther. 2021;29:464–88.

    Article  CAS  PubMed  Google Scholar 

  37. High-dose AAV gene therapy deaths. Nat Biotechnol. 2020;38:910. https://doi.org/10.1038/s41587-020-0642-9.

  38. Nishikawa H, Goto M, Fukunishi S, Asai A, Nishiguchi S, Higuchi K. Cancer cachexia: its mechanism and clinical significance.Int J Mol Sci. 2021;22:8491.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cao K, Ding X, Sheng Y, Wang Y, Liu. Cisplatin binds to the MDM2 RING finger domain and inhibits the ubiquitination activity. Chem Commun. 2020;56:4599–602.

    Article  CAS  Google Scholar 

  40. Nguyen TTT, Shingyoji M, Hanazono M, Zhong B, Morinaga T, Tada Y, et al. An MDM2 inhibitor achieves synergistic cytotoxic effects with adenoviruses lacking E1B55kDa gene on mesothelioma with the wild-type p53 through augmenting NFI expression. Cell Death Dis. 2021;12:663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. McConkey DJ. The integrated stress response and proteotoxicity in cancer therapy. Biochem Biophys Res Commun. 2017;482:450–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Brancolini C, Iuliano L. Proteotoxic stress and cell death in cancer cells. Cancers. 2020;12:2385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Haraguchi T, Koujin T, Shindo T, Bilir S, Osakada H, Nishimura K, et al. Transfected plasmid DNA is incorporated into the nucleus via nuclear envelope reformation at telophase. Commun Biol. 2022;5:78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Usami N, Fukui T, Kondo M, Taniguchi T, Yokoyama T, Mori S, et al. Establishment and characterization of four malignant pleural mesothelioma cell lines from Japanese patients. Cancer Sci. 2006;97:387–94.

    Article  CAS  PubMed  Google Scholar 

  45. Kastan MB, Onyekwere O, Sidransky D, Vogelstein B, Craig RW. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 1991;51:6304–11.

    CAS  PubMed  Google Scholar 

  46. Leonardo AD, Linke SP, Clarkin K, Wahl GM. DNA damage triggers a prolonged p53-dependent G1 arrest and long-term induction of Cip1 in normal human fibroblasts. Genes Dev. 1994;8:2540–51.

    Article  PubMed  Google Scholar 

  47. Lindström MS, Bartek J, Maya-Mendoza A. p53 at the crossroad of DNA replication and ribosome biogenesis stress pathways. Cell Death Differ. 2022;29:972–82.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene. 2001;20:1803–15.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

NM designed this study, collected the data, performed the analysis, and wrote the original draft. YT prepared the dry gene powder. YT, TK, MI, TO, and TH reviewed the manuscript. HO participated in the study design, revised the manuscript, and gave final approval of the version to be submitted. The work reported in the paper has been performed by the authors, unless clearly specified in the text. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Hirokazu Okamoto.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethical approval

As this study does not involve animal studies, human subjects, human material, or human data, ethical approval is not applicable.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muramatsu, N., Ichikawa, M., Katagiri, T. et al. p53 dry gene powder enhances anti-cancer effects of chemotherapy against malignant pleural mesothelioma. Gene Ther 31, 119–127 (2024). https://doi.org/10.1038/s41434-023-00424-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-023-00424-y

Search

Quick links