Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Long-term effects of a fat-directed FGF21 gene therapy in aged female mice

Abstract

Fibroblast growth factor 21 (FGF21) has been developed as a potential therapeutic agent for metabolic syndromes. Moreover, FGF21 is considered a pro-longevity hormone because transgenic mice overexpressing FGF21 display extended lifespan, raising the possibility of using FGF21 to promote healthy aging. We recently showed that visceral fat directed FGF21 gene therapy improves metabolic and immune health in insulin resistant BTBR mice. Here, we used a fat directed rAAV-FGF21 vector in 17-month-old female mice to investigate whether long-term FGF21 gene transfer could mitigate aging-related functional decline. Animals with FGF21 treatment displayed a steady, significant lower body weight over 7-month of the study compared to age-matched control mice. FGF21 treatment reduced adiposity and increased relative lean mass and energy expenditure associated with almost 100 folds higher serum level of FGF21. However, those changes were not translated into benefits on muscle function and did not affect metabolic function of liver. Overall, we have demonstrated that a single dose of fat-directed AAV-FGF21 treatment can provide a sustainable, high serum level of FGF21 over long period of time, and mostly influences adipose tissue homeostasis and energy expenditure. High levels of FGF21 alone in aged mice is not sufficient to improve liver or muscle functions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: VAT-directed FGF21 gene transfer decreases body weight gain in aged female mice.
Fig. 2: VAT-directed FGF21 gene transfer decreases adiposity and increases lean mass in aged female mice.
Fig. 3: VAT-directed FGF21 gene transfer increases energy expenditure per gram body weight in aged female mice.
Fig. 4: VAT-directed FGF21 gene transfer does not improve muscle function in aged female mice.
Fig. 5: VAT-directed FGF21 gene transfer alters white adipose tissue gene expression in aged female mice.
Fig. 6: VAT-directed FGF21 gene transfer alters brown adipose tissue gene expression in aged female mice.
Fig. 7: VAT-directed FGF21 gene transfer does not alter liver function in aged female mice.

Similar content being viewed by others

Data availability

Data supporting the results can be found within the published article and its supplementary files.

References

  1. Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. The Lancet. 2017;389:1323–35.

    Article  Google Scholar 

  2. United Nations DoEaSA, Population Division. World Population Ageing 2019: Highlights. 2019.

  3. Crimmins EM. Lifespan and Healthspan: Past, Present, and Promise. Gerontologist. 2015;55:901–11.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Li Z, Zhang Z, Ren Y, Wang Y, Fang J, Yue H, et al. Aging and age-related diseases: from mechanisms to therapeutic strategies. Biogerontology. 2021;22:165–87.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Niccoli T, Partridge L. Ageing as a Risk Factor for Disease. Curr Biol. 2012;22:R741–R52.

    Article  CAS  PubMed  Google Scholar 

  6. Marengoni A, Angleman S, Melis R, Mangialasche F, Karp A, Garmen A, et al. Aging with multimorbidity: a systematic review of the literature. Ageing Res Rev. 2011;10:430–9.

    Article  PubMed  Google Scholar 

  7. Hirode G, Wong RJ. Trends in the Prevalence of Metabolic Syndrome in the United States, 2011-2016. JAMA. 2020;323:2524–6.

    Article  Google Scholar 

  8. Dominguez LJ, Barbagallo M. The biology of the metabolic syndrome and aging. Curr Opin Clin Nutr Metab Care. 2016;19:5–11.

    Article  CAS  PubMed  Google Scholar 

  9. Lewis JE, Ebling FJP, Samms RJ, Tsintzas K. Going Back to the Biology of FGF21: New Insights. Trends Endocrinol Metab. 2019;30:491–504.

    Article  CAS  PubMed  Google Scholar 

  10. Fisher FM, Maratos-Flier E. Understanding the Physiology of FGF21. Annu Rev Physiol. 2016;78:223–41.

    Article  CAS  PubMed  Google Scholar 

  11. Salminen A, Kauppinen A, Kaarniranta K. FGF21 activates AMPK signaling: impact on metabolic regulation and the aging process. J Mol Med (Berl). 2017;95:123–31.

    Article  CAS  PubMed  Google Scholar 

  12. Szczepanska E, Gietka-Czernel M. FGF21: A Novel Regulator of Glucose and Lipid Metabolism and Whole-Body Energy Balance. Horm Metab Res. 2022;54:203–11.

    Article  CAS  PubMed  Google Scholar 

  13. Tezze C, Romanello V, Sandri M. FGF21 as Modulator of Metabolism in Health and Disease. Front Physiol. 2019;10:419.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Flippo KH, Potthoff MJ. Metabolic Messengers: FGF21. Nat Metab. 2021;3:309–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115:1627–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149:6018–27.

    Article  CAS  PubMed  Google Scholar 

  17. Berglund ED, Li CY, Bina HA, Lynes SE, Michael MD, Shanafelt AB, et al. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology. 2009;150:4084–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kharitonenkov A, Adams AC. Inventing new medicines: The FGF21 story. Mol Metab. 2014;3:221–9.

    Article  CAS  PubMed  Google Scholar 

  19. Jimenez V, Jambrina C, Casana E, Sacristan V, Munoz S, Darriba S, et al. FGF21 gene therapy as treatment for obesity and insulin resistance. EMBO Mol Med. 2018;10:e8791.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Huang W, Liu X, Queen NJ, Cao L. Targeting visceral fat by intraperitoneal delivery of novel AAV serotype vector restricting off-target transduction in liver. Mol Ther Methods Clin Dev. 2017;6:68–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Queen NJ, Bates R, Huang W, Xiao R, Appana B, Cao L. Visceral adipose tissue-directed FGF21 gene therapy improves metabolic and immune health in BTBR mice. Mol Ther Methods Clin Dev. 2021;20:409–22.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang Y, Xie Y, Berglund ED, Coate KC, He TT, Katafuchi T, et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. Elife. 2012;1:e00065.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Davidsohn N, Pezone M, Vernet A, Graveline A, Oliver D, Slomovic S, et al. A single combination gene therapy treats multiple age-related diseases. Proc Natl Acad Sci USA. 2020;117:790.

    Article  Google Scholar 

  24. Charbel Issa P, De Silva SR, Lipinski DM, Singh MS, Mouravlev A, You Q, et al. Assessment of tropism and effectiveness of new primate-derived hybrid recombinant AAV serotypes in the mouse and primate retina. PLoS One. 2013;8:e60361.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu X, Magee D, Wang C, McMurphy T, Slater A, During M, et al. Adipose tissue insulin receptor knockdown via a new primate-derived hybrid recombinant AAV serotype. Molecular Therapy - Methods & Clinical. Development. 2014;1:8.

    Google Scholar 

  26. Huang W, Queen NJ, Cao L. rAAV-Mediated Gene Delivery to Adipose Tissue. Methods Mol Biol (Clifton, NJ). 2019;1950:389–405.

    Article  CAS  Google Scholar 

  27. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods (San Diego, Calif). 2001;25:402–8.

    Article  CAS  PubMed  Google Scholar 

  28. Folch J, Lees M, Stanley GS. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226:497–509.

    Article  CAS  PubMed  Google Scholar 

  29. Tschop MH, Speakman JR, Arch JR, Auwerx J, Bruning JC, Chan L, et al. A guide to analysis of mouse energy metabolism. Nat Methods. 2011;9:57–63.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kaiyala KJ, Schwartz MW. Toward a More Complete (and Less Controversial) Understanding of Energy Expenditure and Its Role in Obesity Pathogenesis. Diabetes. 2011;60:17–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ramos A. Animal models of anxiety: do I need multiple tests? Trends Pharmacol Sci. 2008;29:493–8.

    Article  CAS  PubMed  Google Scholar 

  32. Stanford SC. The Open Field Test: reinventing the wheel. J Psychopharmacol. 2007;21:134–5.

    Article  PubMed  Google Scholar 

  33. Crawley JN. Exploratory behavior models of anxiety in mice. Neurosci Biobehav Rev. 1985;9:37–44.

    Article  CAS  PubMed  Google Scholar 

  34. Nguyen TMD. Adiponectin: Role in Physiology and Pathophysiology. Int J Prev Med. 2020;11:136.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Vestergaard PF, Hansen M, Frystyk J, Espelund U, Christiansen JS, Jorgensen JO, et al. Serum levels of bioactive IGF1 and physiological markers of ageing in healthy adults. Eur J Endocrinol. 2014;170:229–36.

    Article  CAS  PubMed  Google Scholar 

  36. Enerback S. Human brown adipose tissue. Cell Metab. 2010;11:248–52.

    Article  PubMed  Google Scholar 

  37. Enerback S, Jacobsson A, Simpson EM, Guerra C, Yamashita H, Harper ME, et al. Mice lacking mitochondrial uncoupling protein are cold-sensitive but not obese. Nature. 1997;387:90–4.

    Article  ADS  CAS  PubMed  Google Scholar 

  38. High-dose AAV gene therapy deaths. Nat Biotechnol. 2020;38:910.

  39. Miller RA, Harper JM, Galecki A, Burke DT. Big mice die young: early life body weight predicts longevity in genetically heterogeneous mice. Aging Cell. 2002;1:22–9.

    Article  CAS  PubMed  Google Scholar 

  40. Baumann CW, Kwak D, Thompson LV. Assessing onset, prevalence and survival in mice using a frailty phenotype. Aging. 2018;10:4042–53.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fahlstrom A, Yu Q, Ulfhake B. Behavioral changes in aging female C57BL/6 mice. Neurobiol Aging. 2011;32:1868–80.

    Article  PubMed  Google Scholar 

  42. Huang W, Queen NJ, McMurphy TB, Ali S, Cao L. Adipose PTEN regulates adult adipose tissue homeostasis and redistribution via a PTEN-leptin-sympathetic loop. Mol Metabol. 2019;30:48–60.

    Article  CAS  Google Scholar 

  43. Huang W, Queen NJ, McMurphy TB, Ali S, Wilkins RK, Appana B, et al. Adipose PTEN acts as a downstream mediator of a brain-fat axis in environmental enrichment. Compr Psychoneuroendocrinol. 2020;4:100013.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xiao R, Mansour AG, Huang W, Hassan QN 2nd, Wilkins RK, Komatineni SV, et al. Adipocyte CD1d Gene Transfer Induces T Cell Expansion and Adipocyte Inflammation in CD1d Knockout Mice. J Immunol. 2022;208:2109–21.

    Article  CAS  PubMed  Google Scholar 

  45. Hanks LJ, Gutierrez OM, Bamman MM, Ashraf A, McCormick KL, Casazza K. Circulating levels of fibroblast growth factor-21 increase with age independently of body composition indices among healthy individuals. J Clin Transl Endocrinol. 2015;2:77–82.

    PubMed  PubMed Central  Google Scholar 

  46. Villarroya J, Gallego-Escuredo JM, Delgado-Angles A, Cairo M, Moure R, Gracia Mateo M, et al. Aging is associated with increased FGF21 levels but unaltered FGF21 responsiveness in adipose tissue. Aging Cell. 2018;17:e12822.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gallego-Escuredo JM, Gomez-Ambrosi J, Catalan V, Domingo P, Giralt M, Fruhbeck G, et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes (Lond). 2015;39:121–9.

    Article  CAS  PubMed  Google Scholar 

  48. Montanari T, Poscic N, Colitti M. Factors involved in white-to-brown adipose tissue conversion and in thermogenesis: a review. Obes Rev. 2017;18:495–513.

    Article  CAS  PubMed  Google Scholar 

  49. Abu-Odeh M, Zhang Y, Reilly SM, Ebadat N, Keinan O, Valentine JM, et al. FGF21 promotes thermogenic gene expression as an autocrine factor in adipocytes. Cell Rep. 2021;35:109331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26:271–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Owen BM, Ding X, Morgan DA, Coate KC, Bookout AL, Rahmouni K, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20:670–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. BonDurant LD, Ameka M, Naber MC, Markan KR, Idiga SO, Acevedo MR, et al. FGF21 Regulates Metabolism Through Adipose-Dependent and -Independent Mechanisms. Cell Metab. 2017;25:935–44.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Manini TM. Energy expenditure and aging. Ageing Res Rev. 2010;9:1–11.

    Article  CAS  PubMed  Google Scholar 

  54. Kalyani RR, Egan JM. Diabetes and altered glucose metabolism with aging. Endocrinol Metab Clin North Am. 2013;42:333–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bellantuono I, de Cabo R, Ehninger D, Di Germanio C, Lawrie A, Miller J, et al. A toolbox for the longitudinal assessment of healthspan in aging mice. Nat Protoc. 2020;15:540–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Curtis E, Litwic A, Cooper C, Dennison E. Determinants of Muscle and Bone Aging. J Cell Physiol. 2015;230:2618–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Oost LJ, Kustermann M, Armani A, Blaauw B, Romanello V. Fibroblast growth factor 21 controls mitophagy and muscle mass. J Cachexia Sarcopenia Muscle. 2019;10:630–42.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Suomalainen A, Elo JM, Pietilainen KH, Hakonen AH, Sevastianova K, Korpela M, et al. FGF-21 as a biomarker for muscle-manifesting mitochondrial respiratory chain deficiencies: a diagnostic study. Lancet Neurol. 2011;10:806–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sun H, Sherrier M, Li H. Skeletal Muscle and Bone - Emerging Targets of Fibroblast Growth Factor-21. Front Physiol. 2021;12:625287.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Tezze C, Romanello V, Desbats MA, Fadini GP, Albiero M, Favaro G, et al. Age-Associated Loss of OPA1 in Muscle Impacts Muscle Mass, Metabolic Homeostasis, Systemic Inflammation, and Epithelial Senescence. Cell Metab. 2017;25:1374–89. e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wan J, Wu X, Chen H, Xia X, Song X, Chen S, et al. Aging-induced aberrant RAGE/PPARalpha axis promotes hepatic steatosis via dysfunctional mitochondrial beta oxidation. Aging Cell. 2020;19:e13238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stahl EC, Haschak MJ, Popovic B, Brown BN. Macrophages in the Aging Liver and Age-Related Liver Disease. Front Immunol. 2018;9:2795.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Zarei M, Pizarro-Delgado J, Barroso E, Palomer X, Vazquez-Carrera M. Targeting FGF21 for the Treatment of Nonalcoholic Steatohepatitis. Trends Pharmacol Sci. 2020;41:199–208.

    Article  CAS  PubMed  Google Scholar 

  64. Knebel B, Haas J, Hartwig S, Jacob S, Kollmer C, Nitzgen U, et al. Liver-specific expression of transcriptionally active SREBP-1c is associated with fatty liver and increased visceral fat mass. PLoS One. 2012;7:e31812.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pirillo A, Catapano AL, Norata GD. Biological Consequences of Dysfunctional HDL. Curr Med Chem. 2019;26:1644–64.

    Article  CAS  PubMed  Google Scholar 

  66. Youm YH, Horvath TL, Mangelsdorf DJ, Kliewer SA, Dixit VD. Prolongevity hormone FGF21 protects against immune senescence by delaying age-related thymic involution. Proc Natl Acad Sci USA. 2016;113:1026–31.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Comparative Pathology & Mouse Phenotyping Shared Resource at the Ohio State University’s College of Veterinary Medicine and the Small Animal Imaging Core of The Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University for their technical assistance. This work was supported by NIH grants AG041250, CA166590, and CA163640, as well as internal funding from The Ohio State University Comprehensive Cancer Center.

Author information

Authors and Affiliations

Authors

Contributions

JA: Investigation, Formal analysis, Writing-Original Draft. WDA: Investigation, Writing-Review & Editing. WH: Investigation, Writing-Review & Editing. AR: Investigation, Writing-Review & Editing, GO: Investigation, Writing-Review & Editing. LC: Conceptualization, Investigation, Supervision, Writing-Review & Editing, Funding acquisition.

Corresponding author

Correspondence to Lei Cao.

Ethics declarations

Competing interests

LC and WH are inventors of a patent application related to the liver-restricting AAV vector. LC is co-founder of Zvelt Therapeutics. All other authors declare no conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, J.M., Arnold, W.D., Huang, W. et al. Long-term effects of a fat-directed FGF21 gene therapy in aged female mice. Gene Ther 31, 95–104 (2024). https://doi.org/10.1038/s41434-023-00422-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-023-00422-0

Search

Quick links