Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Serotype-specific transduction of canine joint tissue explants and cultured monolayers by self-complementary adeno-associated viral vectors

Abstract

A formal screening of self-complementary adeno-associated virus (scAAV) vector serotypes in canine joint tissues has not been performed to date. Selecting appropriate serotypes is crucial for successful treatment due to their varying levels of tissue tropism. The objective of this study is to identify the most optimal scAAV vector serotype that maximizes transduction efficiencies in canine cell monolayer cultures (chondrocytes, synoviocytes, and mesenchymal stem cells) and tissue explant cultures (cartilage and synovium). Transduction efficiencies of scAAV serotypes 1, 2, 2.5, 3, 4, 5, 6, 8, and 9 were evaluated in each culture type in three different vector concentrations by encoding a green fluorescent protein. It was found that scAAV2 and 2.5 showed the overall highest transduction efficiency among serotypes with dose-response. Since possible immune response against conventional AAV2 was previously reported in dogs, the chimeric scAAV2.5 may be more suitable to use. Evaluation of the safety and efficacy of the scAAV2.5 vector with an appropriate therapeutic gene in vivo is indicated.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Representative fluorescence micrographs of cell monolayers and tissue explants showing the presence or absence of scAAVGFP transduction with the vectors tested.
Fig. 2: Representative fluorescence micrographs of cartilage explants with scAAV2 in 10,000 vpc on day 4 post-transduction.
Fig. 3: Ranking of scAAV transduction efficiency as the percent of cells transduced in cartilage explants (n = 6), chondrocytes (n = 4), MSCs (n = 4), synovial explants (n = 4), and synoviocytes (n = 4) in 10,000 vpc.
Fig. 4: Transduction efficiencies of scAAV2 and 2.5 in three different vector concentrations (1000/5000/10,000 vpc) in cartilage explants (n = 6), chondrocytes (n = 4), MSCs (n = 4), synovial explants (n = 4), and synoviocytes (n = 4).
Fig. 5: Comparison of transduction efficiency within different culture types but same tissue of origin, including cartilage explants (n = 6), chondrocytes (n = 4), synovial explants (n = 4), and synoviocytes (n = 4) in 10,000 vpc.

Data availability

All data are available upon reasonable request.

References

  1. Plotnikoff R, Karunamuni N, Lytvyak E, Penfold C, Schopflocher D, Imayama I, et al. Osteoarthritis prevalence and modifiable factors: a population study. BMC Public Health. 2015;15:1195.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vina ER, Kwoh CK. Epidemiology of osteoarthritis: literature update. Curr Opin Rheumatol. 2018;30:160–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. O’Neill TW, McCabe PS, McBeth J. Update on the epidemiology, risk factors and disease outcomes of osteoarthritis. Best Pract Res Clin Rheumatol. 2018;32:312–26.

    Article  PubMed  Google Scholar 

  4. Bendele A, Animal models of osteoarthritis. J Musculoskelet Neuronal Interact. 2001;1:363–76.

    CAS  PubMed  Google Scholar 

  5. Meeson RL, Todhunter RJ, Blunn G, Nuki G, Pitsillides AA. Spontaneous dog osteoarthritis—a One Medicine vision. Nat Rev Rheumatol. 2019;15:273–87.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Klinck MP, Mogil JS, Moreau M, Lascelles BDX, Flecknell PA, Poitte T, et al. Translational pain assessment: could natural animal models be the missing link? Pain. 2017;158:1633–46.

    Article  PubMed  Google Scholar 

  7. Anderson KL, O’Neill DG, Brodbelt DC, Church DB, Meeson RL, Sargan D, et al. Prevalence, duration and risk factors for appendicular osteoarthritis in a UK dog population under primary veterinary care. Sci Rep. 2018;8:5641.

    Article  PubMed  PubMed Central  Google Scholar 

  8. O’Neill DG, Church DB, McGreevy PD, Thomson PC, Brodbelt DC. Prevalence of disorders recorded in dogs attending primary-care veterinary practices in England. PLoS One. 2014;9:e90501.

    Article  PubMed Central  Google Scholar 

  9. Johnston SA. Osteoarthritis: joint anatomy, physiology, and pathobiology. Vet Clin North Am Small Anim Pract. 1997;27:699–723.

    Article  CAS  PubMed  Google Scholar 

  10. Felson DT, Lawrence RC, Hochberg MC, McAlindon T, Dieppe PA, Minor MA, et al. Osteoarthritis: new insights. Part 2: treatment approaches. Ann Intern Med. 2000;133:726–37.

    Article  CAS  PubMed  Google Scholar 

  11. Sandersoln R, Beata C, Flipo R, Genevois J, Macias C, Tacke S, et al. Systematic review of the management of canine osteoarthritis. Vet Rec. 2009;164:418–24.

    Article  Google Scholar 

  12. Zavvar M, Assadiasl S, Soleimanifar N, Pakdel FD, Abdolmohammadi K, Fatahi Y, et al. Gene therapy in rheumatoid arthritis: strategies to select therapeutic genes. J Cell Physiol. 2019;234:16913–24.

    Article  CAS  PubMed  Google Scholar 

  13. Xing D, Kwong J, Yang Z, Hou Y, Zhang W, Ma B, et al. Intra-articular injection of mesenchymal stem cells in treating knee osteoarthritis: a systematic review of animal studies. Osteoarthr Cartil. 2018;26:445–61.

    Article  CAS  Google Scholar 

  14. Goodrich LR, Gene therapy and tissue engineering. In: Cole B (ed). Biological knee reconstruction: A surgeon’s guide. 1 ed: Slack Incorporated; 2015. p. 233–9.

  15. Evans CH, Ghivizzani SC, Robbins PD. Gene delivery to joints by intra-articular injection. Hum Gene Ther. 2018;29:2–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Monahan P, Samulski R. AAV vectors: is clinical success on the horizon? Gene Ther. 2000;7:24–30.

    Article  CAS  PubMed  Google Scholar 

  17. Kodippili K, Hakim CH, Pan X, Yang HT, Yue Y, Zhang Y, et al. Dual AAV gene therapy for Duchenne muscular dystrophy with a 7-kb mini-dystrophin gene in the canine model. Hum Gene Ther. 2018;29:299–311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dupont J-B, Guo J, Renaud-Gabardos E, Poulard K, Latournerie V, Lawlor MW, et al. AAV-mediated gene transfer restores a normal muscle transcriptome in a canine model of X-linked myotubular myopathy. Mol Ther. 2019;28:382–93.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mack DL, Poulard K, Goddard MA, Latournerie V, Snyder JM, Grange RW, et al. Systemic AAV8-mediated gene therapy drives whole-body correction of myotubular myopathy in dogs. Mol Ther. 2017;25:839–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. French RA, Samelson-Jones BJ, Niemeyer GP, Lothrop CD Jr, Merricks EP, Nichols TC, et al. Complete correction of hemophilia B phenotype by FIX-Padua skeletal muscle gene therapy in an inhibitor-prone dog model. Blood Adv. 2018;2:505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun J, Shao W, Chen X, Merricks EP, Wimsey L, Abajas YL, et al. An observational study from long-term AAV re-administration in two hemophilia dogs. Mol Ther - Methods Clin Dev. 2018;10:257–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. French R, Martin N, Nichols TC, Niemeyer GP, Lothrop CD, Arruda VR. Complete correction of severe canine hemophilia B by skeletal muscle directed AAV-based FIX-Padua Gene Therapy in inhibitor-prone dogs. Blood. 2015;126:3487.

    Article  Google Scholar 

  23. Lee YM, Conlon TJ, Specht A, Coleman KE, Brown LM, Estrella AM, et al. Long-term safety and efficacy of AAV gene therapy in the canine model of glycogen storage disease type Ia. J Inherit Metab Dis. 2018;41:977–84.

    Article  CAS  PubMed  Google Scholar 

  24. Pichard V, Provost N, Mendes-Madeira A, Libeau L, Hulin P, Tshilenge K-T, et al. AAV-mediated gene therapy halts retinal degeneration in PDE6β-deficient dogs. Mol Ther. 2016;24:867–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Mowat F, Breuwer A, Bartoe J, Annear M, Zhang Z, Smith A, et al. RPE65 gene therapy slows cone loss in Rpe65-deficient dogs. Gene Ther. 2013;20:545.

    Article  CAS  PubMed  Google Scholar 

  26. Annear M, Bartoe J, Barker S, Smith A, Curran P, Bainbridge J, et al. Gene therapy in the second eye of RPE65-deficient dogs improves retinal function. Gene Ther. 2011;18:53.

    Article  CAS  PubMed  Google Scholar 

  27. Boyd R, Sledge D, Boye S, Boye S, Hauswirth W, Komáromy A, et al. Photoreceptor-targeted gene delivery using intravitreally administered AAV vectors in dogs. Gene Ther. 2016;23:223.

    Article  CAS  PubMed  Google Scholar 

  28. Gurda BL, De Lataillade ADG, Bell P, Zhu Y, Yu H, Wang P, et al. Evaluation of AAV-mediated gene therapy for central nervous system disease in canine mucopolysaccharidosis VII. Mol Ther. 2016;24:206–16.

    Article  CAS  PubMed  Google Scholar 

  29. Kyostio-Moore S, Berthelette P, Cornell CS, Nambiar B, Figueiredo MD. Hyaluronic acid synthase-2 gene transfer into the joints of Beagles by use of recombinant adeno-associated viral vectors. Am J Vet Res. 2018;79:505–17.

    Article  CAS  PubMed  Google Scholar 

  30. Watkins LR, Chavez RA, Landry R, Fry M, Green-Fulgham SM, Coulson JD, et al. Targeted interleukin-10 plasmid DNA therapy in the treatment of osteoarthritis: toxicology and pain efficacy assessments. Brain Behav Immun. 2020;90:155–66.

    Article  CAS  PubMed  Google Scholar 

  31. Pelletier JP, Caron JP, Evans C, Robbins PD, Georgescu HI, Jovanovic D, et al. In vivo suppression of early experimental osteoarthritis by interleukin‐1 receptor antagonist using gene therapy. Arthritis Rheum. 1997;40:1012–9.

    Article  CAS  PubMed  Google Scholar 

  32. McCarty DM, Monahan PE, Samulski RJ. Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 2001;8:1248–54.

    Article  CAS  PubMed  Google Scholar 

  33. Kay JD, Gouze E, Oligino TJ, Gouze JN, Watson RS, Levings PP, et al. Intra‐articular gene delivery and expression of interleukin‐1Ra mediated by self‐complementary adeno‐associated virus. J Gene Med. 2009;11:605–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Goodrich LR, Choi VW, Carbone BA, McIlwraith CW, Samulski RJ. Ex vivo serotype-specific transduction of equine joint tissue by self-complementary adeno-associated viral vectors. Hum Gene Ther. 2009;20:1697–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Madry H, Cucchiarini M, Terwilliger EF, Trippel SB. Recombinant adeno-associated virus vectors efficiently and persistently transduce chondrocytes in normal and osteoarthritic human articular cartilage. Hum Gene Ther. 2003;14:393–402.

    Article  CAS  PubMed  Google Scholar 

  36. Hemphill DD, McIlwraith CW, Samulski RJ, Goodrich LR. Adeno-associated viral vectors show serotype specific transduction of equine joint tissue explants and cultured monolayers. Sci Rep. 2014;4:5861.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Goodrich LR, Phillips JN, McIlwraith CW, Foti SB, Grieger JC, Gray SJ, et al. Optimization of scAAVIL-1ra In Vitro and In Vivo to Deliver High Levels of Therapeutic Protein for Treatment of Osteoarthritis. Mol Ther Nucleic Acids. 2013;2:e70.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Goodrich LR, Grieger JC, Phillips JN, Khan N, Gray SJ, McIlwraith CW, et al. scAAVIL-1ra dosing trial in a large animal model and validation of long-term expression with repeat administration for osteoarthritis therapy. Gene Ther. 2015;22:536–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ulrich-Vinther M. Gene therapy methods in bone and joint disorders: Evaluation of the adeno-associated virus vector in experimental models of articular cartilage disorders, periprosthetic osteolysis and bone healing. Acta Orthop. 2007;78:2–64.

    Article  Google Scholar 

  40. Nixon AJ, Lust G, Vernier-Singer M. Isolation, propagation, and cryopreservation of equine articular chondrocytes. Am J Vet Res. 1992;53:2364–70.

    CAS  PubMed  Google Scholar 

  41. Rabinowitz JE, Rolling F, Li C, Conrath H, Xiao W, Xiao X, et al. Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity. J Virol. 2002;76:791–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Santangelo KS, Baker SA, Nuovo G, Dyce J, Bartlett JS, Bertone AL. Detectable reporter gene expression following transduction of adenovirus and adeno‐associated virus serotype 2 vectors within full‐thickness osteoarthritic and unaffected canine cartilage in vitro and unaffected guinea pig cartilage in vivo. J Orthop Res. 2010;28:149–55.

    Article  CAS  PubMed  Google Scholar 

  43. Watson RS, Broome TA, Levings PP, Rice BL, Kay JD, Smith AD, et al. scAAV-mediated gene transfer of interleukin-1-receptor antagonist to synovium and articular cartilage in large mammalian joints. Gene Ther. 2013;20:670.

    Article  CAS  PubMed  Google Scholar 

  44. Mietzsch M, Broecker F, Reinhardt A, Seeberger PH, Heilbronn R. Differential adeno-associated virus serotype-specific interaction patterns with synthetic heparins and other glycans. J Virol. 2014;88:2991–3003.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bell CL, Vandenberghe LH, Bell P, Limberis MP, Gao G-P, Van Vliet K, et al. The AAV9 receptor and its modification to improve in vivo lung gene transfer in mice. J Clin Invest. 2011;121:2427–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Akache B, Grimm D, Pandey K, Yant SR, Xu H, Kay MA. The 37/67-kilodalton laminin receptor is a receptor for adeno-associated virus serotypes 8, 2, 3, and 9. J Virol. 2006;80:9831–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mason JB, Vandenberghe LH, Xiao R, Wilson JM, Richardson DW. Influence of serotype, cell type, tissue composition, and time after inoculation on gene expression in recombinant adeno-associated viral vector–transduced equine joint tissues. Am J Vet Res. 2012;73:1178–85.

    Article  PubMed  Google Scholar 

  48. Chanalaris A, Clarke H, Guimond SE, Vincent TL, Turnbull JE, Troeberg L. Heparan sulfate proteoglycan synthesis is dysregulated in human Osteoarthritic Cartilage. Am J Pathol. 2019;189:632–47.

    Article  CAS  PubMed  Google Scholar 

  49. Calcedo R, Franco J, Qin Q, Richardson DW, Mason JB, Boyd S, et al. Preexisting neutralizing antibodies to adeno-associated virus capsids in large animals other than monkeys may confound in vivo gene therapy studies. Hum Gene Ther Methods. 2015;26:103–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Rapti K, Louis-Jeune V, Kohlbrenner E, Ishikawa K, Ladage D, Zolotukhin S, et al. Neutralizing antibodies against AAV serotypes 1, 2, 6, and 9 in sera of commonly used animal models. Mol Ther. 2012;20:73–83.

    Article  CAS  PubMed  Google Scholar 

  51. Shin J-H, Yue Y, Smith B, Duan D. Humoral immunity to AAV-6, 8, and 9 in normal and dystrophic dogs. Hum Gene Ther. 2012;23:287–94.

    Article  CAS  PubMed  Google Scholar 

  52. Yuasa K, Yoshimura M, Urasawa N, Ohshima S, Howell J, Nakamura A, et al. Injection of a recombinant AAV serotype 2 into canine skeletal muscles evokes strong immune responses against transgene products. Gene Ther. 2007;14:1249–60.

    Article  CAS  PubMed  Google Scholar 

  53. Bowles DE, McPhee SW, Li C, Gray SJ, Samulski JJ, Camp AS, et al. Phase 1 gene therapy for Duchenne muscular dystrophy using a translational optimized AAV vector. Mol Ther. 2012;20:443–55.

    Article  CAS  PubMed  Google Scholar 

  54. Roach H, Aigner T, Soder S, Haag J, Welkerling H. Pathobiology of osteoarthritis: pathomechanisms and potential therapeutic targets. Curr Drug Targets. 2007;8:271–82.

    Article  CAS  PubMed  Google Scholar 

  55. Brown S, Kumar S, Sharma B. Intra-articular targeting of nanomaterials for the treatment of osteoarthritis. Acta Biomater. 2019;93:239–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hamilton BA, Li X, Pezzulo AA, Abou Alaiwa MH, Zabner J. Polarized AAVR expression determines infectivity by AAV gene therapy vectors. Gene Ther. 2019;26:240–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Morris Animal Foundation (D21CA-086) and 2020 (FY21) College Research Council RFP (#1393) from Colorado State University.

Author information

Authors and Affiliations

Authors

Contributions

LG managed the project. LG, JP, FD, and AK conceived and designed the experiments. JP and AK performed most of the experiments and data analysis. AK wrote the manuscript. LG, RS, JG, and FD provided feedback on the manuscript.

Corresponding author

Correspondence to Laurie R. Goodrich.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, A.Y., Duerr, F.M., Phillips, J.N. et al. Serotype-specific transduction of canine joint tissue explants and cultured monolayers by self-complementary adeno-associated viral vectors. Gene Ther (2022). https://doi.org/10.1038/s41434-022-00366-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41434-022-00366-x

Search

Quick links