Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A novel preclinical model of mucopolysaccharidosis type II for developing human hematopoietic stem cell gene therapy

Abstract

A hematopoietic stem cell (HSC) gene therapy (GT) using lentiviral vectors has attracted interest as a promising treatment approach for neuropathic lysosomal storage diseases. To proceed with the clinical development of HSC-GT, evaluation of the therapeutic potential of gene-transduced human CD34+ (hCD34+) cells in vivo is one of the key issues before human trials. Here, we established an immunodeficient murine model of mucopolysaccharidosis type II (MPS II), which are transplantable human cells, and demonstrated the application of those mice in evaluating the therapeutic efficacy of gene-modified hCD34+ cells. NOG/MPS II mice, which were generated using CRISPR/Cas9, exhibited a reduction of disease-causing enzyme iduronate-2-sulfatatase (IDS) activity and the accumulation of glycosaminoglycans in their tissues. When we transplanted hCD34+ cells transduced with a lentiviral vector carrying the IDS gene into NOG/MPS II mice, a significant amelioration of biochemical pathophenotypes was observed in the visceral and neuronal tissues of those mice. In addition, grafted cells in the NOG/MPS II mice showed the oligoclonal integration pattern of the vector, but no obvious clonal dominance was detected in the mice. Our findings indicate the promising application of NOG/MPS II mice to preclinical study of HSC-GT for MPS II using human cells.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Biochemical characterization of NOG/MPS II mice.
Fig. 2: Scheme of pLGT1-MND-IDS lentiviral vector and experimental design.
Fig. 3: Engraftment of human cells in NOG/MPS II mice after GT and HSCT.
Fig. 4: IDS activity in NOG/MPS II mice after GT and HSCT.
Fig. 5: GAG accumulation in NOG/MPS II mice after GT and HSCT.
Fig. 6: Vector integration site analysis of the bone marrow and spleen from NOG/MPS II mice after GT.

Data availability

The data analyzed during this study are available from the corresponding author upon reasonable request.

References

  1. Bach G, Eisenberg F Jr, Cantz M, Neufeld EF. The defect in the Hunter syndrome: deficiency of sulfoiduronate sulfatase. Proc Natl Acad Sci USA. 1973;70:2134–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Muenzer J. The mucopolysaccharidoses: a heterogeneous group of disorders with variable pediatric presentations. J Pediatr. 2004;144(5 Suppl):S27–34.

    Article  CAS  Google Scholar 

  3. Muenzer J, Wraith JE, Beck M, Giugliani R, Harmatz P, Eng CM, et al. A phase II/III clinical study of enzyme replacement therapy with idursulfase in mucopolysaccharidosis II (Hunter syndrome). Genet Med. 2006;8:465–73.

    Article  CAS  PubMed  Google Scholar 

  4. Taylor M, Khan S, Stapleton M, Wang J, Chen J, Wynn R, et al. Hematopoietic stem cell transplantation for mucopolysaccharidoses: past, present, and future. Biol Blood Marrow Transplant. 2019;25:e226–46.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kubaski F, Yabe H, Suzuki Y, Seto T, Hamazaki T, Mason RW, et al. Hematopoietic stem cell transplantation for patients with mucopolysaccharidosis II. Biol Blood Marrow Transplant. 2017;23:1795–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Peters C, Steward CG. Hematopoietic cell transplantation for inherited metabolic diseases: an overview of outcomes and practice guidelines. Bone Marrow Transplant. 2003;31:229–39.

    Article  CAS  PubMed  Google Scholar 

  7. Scarpa M, Orchard PJ, Schulz A, Dickson PI, Haskins ME, Escolar ML, et al. Treatment of brain disease in the mucopolysaccharidoses. Mol Genet Metab. 2017;122S:25–34.

    Article  PubMed  CAS  Google Scholar 

  8. Akiyama K, Shimada Y, Higuchi T, Ohtsu M, Nakauchi H, Kobayashi H, et al. Enzyme augmentation therapy enhances the therapeutic efficacy of bone marrow transplantation in mucopolysaccharidosis type II mice. Mol Genet Metab. 2014;111:139–46.

    Article  CAS  PubMed  Google Scholar 

  9. Prasad VK, Kurtzberg J. Transplant outcomes in mucopolysaccharidoses. Semin Hematol. 2010;47:59–69.

    Article  CAS  PubMed  Google Scholar 

  10. Tanaka A, Okuyama T, Suzuki Y, Sakai N, Takakura H, Sawada T, et al. Long-term efficacy of hematopoietic stem cell transplantation on brain involvement in patients with mucopolysaccharidosis type II: a nationwide survey in Japan. Mol Genet Metab. 2012;107:513–20.

    Article  CAS  PubMed  Google Scholar 

  11. Tanjuakio J, Suzuki Y, Patel P, Yasuda E, Kubaski F, Tanaka A, et al. Activities of daily living in patients with Hunter syndrome: impact of enzyme replacement therapy and hematopoietic stem cell transplantation. Mol Genet Metab. 2015;114:161–9.

    Article  CAS  PubMed  Google Scholar 

  12. Ferrari G, Thrasher AJ, Aiuti A. Gene therapy using haematopoietic stem and progenitor cells. Nat Rev Genet. 2021;22:216–34.

    Article  CAS  PubMed  Google Scholar 

  13. Doering CB, Denning G, Shields JE, Fine EJ, Parker ET, Srivastava A, et al. Preclinical development of a hematopoietic stem and progenitor cell bioengineered factor VIII lentiviral vector gene therapy for hemophilia A. Hum Gene Ther. 2018;29:1183–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wakabayashi T, Shimada Y, Akiyama K, Higuchi T, Fukuda T, Kobayashi H, et al. Hematopoietic stem cell gene therapy corrects neuropathic phenotype in murine model of mucopolysaccharidosis type II. Hum Gene Ther. 2015;26:357–66.

    Article  CAS  PubMed  Google Scholar 

  15. Miwa S, Watabe AM, Shimada Y, Higuchi T, Kobayashi H, Fukuda T, et al. Efficient engraftment of genetically modified cells is necessary to ameliorate central nervous system involvement of murine model of mucopolysaccharidosis type II by hematopoietic stem cell-targeted gene therapy. Mol Genet Metab. 2020;130:262–73.

    Article  CAS  PubMed  Google Scholar 

  16. Wada M, Shimada Y, Iizuka S, Ishii N, Hiraki H, Tachibana T, et al. Ex vivo gene therapy treats bone complications of mucopolysaccharidosis type II mouse models through bone remodeling reactivation. Mol Ther Methods Clin Dev. 2020;19:261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ito M, Hiramatsu H, Kobayashi K, Suzue K, Kawahata M, Hioki K, et al. NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood. 2002;100:3175–82.

    Article  CAS  PubMed  Google Scholar 

  18. Ka Y, Katano I, Nishinaka E, Welcker J, Mochizuki M, Kawai K, et al. Improved engraftment of human peripheral blood mononuclear cells in NOG MHC double knockout mice generated using CRISPR/Cas9. Immunol Lett. 2021;229:55–61.

    Article  CAS  PubMed  Google Scholar 

  19. Heffner GC, Bonner M, Christiansen L, Pierciey FJ, Campbell D, Smurnyy Y, et al. Prostaglandin E(2) increases lentiviral vector transduction efficiency of adult human hematopoietic stem and progenitor cells. Mol Ther. 2018;26:320–8.

    Article  CAS  PubMed  Google Scholar 

  20. Ellison SM, Liao A, Wood S, Taylor J, Youshani AS, Rowlston S, et al. Pre-clinical safety and efficacy of lentiviral vector-mediated ex vivo stem cell gene therapy for the treatment of mucopolysaccharidosis IIIA. Mol Ther Methods Clin Dev. 2019;13:399–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimada Y, Wakabayashi T, Akiyama K, Hoshina H, Higuchi T, Kobayashi H, et al. A method for measuring disease-specific iduronic acid from the non-reducing end of glycosaminoglycan in mucopolysaccharidosis type II mice. Mol Genet Metab. 2016;117:140–3.

    Article  CAS  PubMed  Google Scholar 

  22. Hoshina H, Shimada Y, Higuchi T, Kobayashi H, Ida H, Ohashi T. Chaperone effect of sulfated disaccharide from heparin on mutant iduronate-2-sulfatase in mucopolysaccharidosis type II. Mol Genet Metab. 2018;123:118–22.

    Article  CAS  PubMed  Google Scholar 

  23. Yokoi K, Akiyama K, Kaneshiro E, Higuchi T, Shimada Y, Kobayashi H, et al. Effect of donor chimerism to reduce the level of glycosaminoglycans following bone marrow transplantation in a murine model of mucopolysaccharidosis type II. J Inherit Metab Dis. 2015;38:333–40.

    Article  CAS  PubMed  Google Scholar 

  24. Schmidt M, Hoffmann G, Wissler M, Lemke N, Müssig A, Glimm H, et al. Detection and direct genomic sequencing of multiple rare unknown flanking DNA in highly complex samples. Hum Gene Ther. 2001;12:743–9.

    Article  CAS  PubMed  Google Scholar 

  25. Afzal S, Wilkening S, von Kalle C, Schmidt M, Fronza R. GENE-IS: time-efficient and accurate analysis of viral integration events in large-scale gene therapy data. Mol Ther Nucleic Acids. 2017;6:133–9.

    Article  CAS  PubMed  Google Scholar 

  26. Howe SJ, Mansour MR, Schwarzwaelder K, Bartholomae C, Hubank M, Kempski H, et al. Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients. J Clin Investig. 2008;118:3143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hacein-Bey-Abina S, von Kalle C, Schmidt M, Le Deist F, Wulffraat N, McIntyre E, et al. A serious adverse event after successful gene therapy for X-linked severe combined immunodeficiency. N Engl J Med. 2003;348:255–6.

    Article  PubMed  Google Scholar 

  28. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N, Leboulch P, et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science. 2003;302:415–9.

    Article  CAS  PubMed  Google Scholar 

  29. Ott MG, Schmidt M, Schwarzwaelder K, Stein S, Siler U, Koehl U, et al. Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med. 2006;12:401–9.

    Article  CAS  PubMed  Google Scholar 

  30. Deichmann A, Hacein-Bey-Abina S, Schmidt M, Garrigue A, Brugman MH, Hu J, et al. Vector integration is nonrandom and clustered and influences the fate of lymphopoiesis in SCID-X1 gene therapy. J Clin Investig. 2007;117:2225–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hacein-Bey-Abina S, Garrigue A, Wang GP, Soulier J, Lim A, Morillon E, et al. Insertional oncogenesis in 4 patients after retrovirus-mediated gene therapy of SCID-X1. J Clin Investig. 2008;118:3132–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boztug K, Schmidt M, Schwarzer A, Banerjee PP, Díez IA, Dewey RA, et al. Stem-cell gene therapy for the Wiskott-Aldrich syndrome. N Engl J Med. 2010;363:1918–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Braun CJ, Boztug K, Paruzynski A, Witzel M, Schwarzer A, Rothe M, et al. Gene therapy for Wiskott-Aldrich syndrome—long-term efficacy and genotoxicity. Sci Transl Med. 2014;6:227ra33.

    Article  PubMed  CAS  Google Scholar 

  34. Hofling AA, Vogler C, Creer MH, Sands MS. Engraftment of human CD34+ cells leads to widespread distribution of donor-derived cells and correction of tissue pathology in a novel murine xenotransplantation model of lysosomal storage disease. Blood. 2003;101:2054–63.

    Article  CAS  PubMed  Google Scholar 

  35. Pacienza N, Yoshimitsu M, Mizue N, Au BC, Wang JC, Fan X, et al. Lentivector transduction improves outcomes over transplantation of human HSCs alone in NOD/SCID/Fabry mice. Mol Ther. 2012;20:1454–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ito R, Takahashi T, Katano I, Ito M. Current advances in humanized mouse models. Cell Mol Immunol. 2012;9:208–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Muenzer J, Lamsa JC, Garcia A, Dacosta J, Garcia J, Treco DA. Enzyme replacement therapy in mucopolysaccharidosis type II (Hunter syndrome): a preliminary report. Acta Paediatr Suppl. 2002;91:98–9.

    Article  CAS  PubMed  Google Scholar 

  38. Uchida N, Hsieh MM, Hayakawa J, Madison C, Washington KN, Tisdale JF. Optimal conditions for lentiviral transduction of engrafting human CD34+ cells. Gene Ther. 2011;18:1078–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Biffi A, Montini E, Lorioli L, Cesani M, Fumagalli F, Plati T, et al. Lentiviral hematopoietic stem cell gene therapy benefits metachromatic leukodystrophy. Science. 2013;341:1233158.

    Article  PubMed  CAS  Google Scholar 

  40. Aiuti A, Biasco L, Scaramuzza S, Ferrua F, Cicalese MP, Baricordi C, et al. Lentiviral hematopoietic stem cell gene therapy in patients with Wiskott-Aldrich syndrome. Science. 2013;341:1233151.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Scaramuzza S, Biasco L, Ripamonti A, Castiello MC, Loperfido M, Draghici E, et al. Preclinical safety and efficacy of human CD34(+) cells transduced with lentiviral vector for the treatment of Wiskott-Aldrich syndrome. Mol Ther. 2013;21:175–84.

    Article  CAS  PubMed  Google Scholar 

  42. Jang Y, Kim YS, Wielgosz MM, Ferrara F, Ma Z, Condori J, et al. Optimizing lentiviral vector transduction of hematopoietic stem cells for gene therapy. Gene Ther. 2020;27:545–56.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Biffi A, De Palma M, Quattrini A, Del Carro U, Amadio S, Visigalli I, et al. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Investig. 2004;113:1118–29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Bhatia M, Wang JC, Kapp U, Bonnet D, Dick JE. Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA. 1997;94:5320–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Baldwin K, Urbinati F, Romero Z, Campo-Fernandez B, Kaufman ML, Cooper AR, et al. Enrichment of human hematopoietic stem/progenitor cells facilitates transduction for stem cell gene therapy. Stem Cells. 2015;33:1532–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zonari E, Desantis G, Petrillo C, Boccalatte FE, Lidonnici MR, Kajaste-Rudnitski A, et al. Efficient ex vivo engineering and expansion of highly purified human hematopoietic stem and progenitor cell populations for gene therapy. Stem Cell Reports. 2017;8:977–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hordyjewska A, Popiołek Ł, Horecka A. Characteristics of hematopoietic stem cells of umbilical cord blood. Cytotechnology. 2015;67:387–96.

    Article  CAS  PubMed  Google Scholar 

  48. Wang JC, Doedens M, Dick JE. Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood. 1997;89:3919–24.

    Article  CAS  PubMed  Google Scholar 

  49. Feng X, Wu Y, Zhang J, Li J, Zhu G, Fan D, et al. Busulfan systemic exposure and its relationship with efficacy and safety in hematopoietic stem cell transplantation in children: a meta-analysis. BMC Pediatr. 2020;20:176.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Capotondo A, Milazzo R, Politi LS, Quattrini A, Palini A, Plati T, et al. Brain conditioning is instrumental for successful microglia reconstitution following hematopoietic stem cell transplantation. Proc Natl Acad Sci USA. 2012;109:15018–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wilkinson FL, Sergijenko A, Langford-Smith KJ, Malinowska M, Wynn RF, Bigger BW. Busulfan conditioning enhances engraftment of hematopoietic donor-derived cells in the brain compared with irradiation. Mol Ther. 2013;21:868–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Leone G, Mele L, Pulsoni A, Equitani F, Pagano L. The incidence of secondary leukemias. Haematologica. 1999;84:937–45.

    CAS  PubMed  Google Scholar 

  53. Pagano L, Pulsoni A, Tosti ME, Annino L, Mele A, Camera A, et al. Acute lymphoblastic leukaemia occurring as second malignancy: report of the GIMEMA archive of adult acute leukaemia. Gruppo Italiano Malattie Ematologiche Maligne dell’Adulto. Br J Haematol. 1999;106:1037–40.

    Article  CAS  PubMed  Google Scholar 

  54. Hsieh MM, Bonner M, Pierciey FJ, Uchida N, Rottman J, Demopoulos L, et al. Myelodysplastic syndrome unrelated to lentiviral vector in a patient treated with gene therapy for sickle cell disease. Blood Adv. 2020;4:2058–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Goyal S, Tisdale J, Schmidt M, Kanter J, Jaroscak J, Whitney D, et al. Acute myeloid leukemia case after gene therapy for sickle cell disease. N Engl J Med. 2022;386:138–47.

    Article  CAS  PubMed  Google Scholar 

  56. Boulad F, Maggio A, Wang X, Moi P, Acuto S, Kogel F, et al. Lentiviral globin gene therapy with reduced-intensity conditioning in adults with β-thalassemia: a phase 1 trial. Nat Med. 2022;28:63–70.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Mr. Tim Rath (GeneWerk) for analysis of the integration sites. Additionally, we thank Ms. Sayoko Iizuka, (The Jikei University School of Medicine) for her excellent technical assistance. This study was supported by AMED under grant no. JP19ek109224h, and Grant-in-Aid for Scientific Research (C) (19K08262).

Author information

Authors and Affiliations

Authors

Contributions

Y.S. and T.O. conceptualized the project; Y.S., T.O., and H.K. designed experiments; Y.S., N.I., T.H., and M.G. performed experiments and analyzed the data; Y.S., N.I., T.H., M.G., T.O., and H.K. discussed the data. Y.S. wrote the original manuscript; T.H., M.G., T.O., and H.K. reviewed and edited the manuscript.

Corresponding author

Correspondence to Yohta Shimada.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shimada, Y., Ishii, N., Higuchi, T. et al. A novel preclinical model of mucopolysaccharidosis type II for developing human hematopoietic stem cell gene therapy. Gene Ther (2022). https://doi.org/10.1038/s41434-022-00357-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41434-022-00357-y

Search

Quick links