Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gene therapy restores mitochondrial function and protects retinal ganglion cells in optic neuropathy induced by a mito-targeted mutant ND1 gene

Abstract

Therapies for genetic disorders caused by mutated mitochondrial DNA are an unmet need, in large part due barriers in delivering DNA to the organelle and the absence of relevant animal models. We injected into mouse eyes a mitochondrially targeted Adeno-Associated-Virus (MTS-AAV) to deliver the mutant human NADH ubiquinone oxidoreductase subunit I (hND1/m.3460G > A) responsible for Leber’s hereditary optic neuropathy, the most common primary mitochondrial genetic disease. We show that the expression of the mutant hND1 delivered to retinal ganglion cells (RGC) layer colocalizes with the mitochondrial marker PORIN and the assembly of the expressed hND1 protein into host respiration complex I. The hND1-injected eyes exhibit hallmarks of the human disease with progressive loss of RGC function and number, as well as optic nerve degeneration. We also show that gene therapy in the hND1 eyes by means of an injection of a second MTS-AAV vector carrying wild-type human ND1 restores mitochondrial respiratory complex I activity, the rate of ATP synthesis and protects RGCs and their axons from dysfunction and degeneration. These results prove that MTS-AAV is a highly efficient gene delivery approach with the ability to create mito-animal models and has the therapeutic potential to treat mitochondrial genetic diseases.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Delivery and expression of hND1/m.3460 G > A in mouse retinal ganglion cells (RGC).
Fig. 2: Delivered hND1/m.3460 G > A induces retinal degeneration.
Fig. 3: Vision loss induced by hND1/m.3460 G > A is rescued by gene therapy allele.
Fig. 4: hND1/m.3460 G > A causes loss of axons and RGCs.

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Kauppila JHK, Baines HL, Bratic A, Simard ML, Freyer C, Mourier A, et al. A Phenotype-Driven Approach to Generate Mouse Models with Pathogenic mtDNA Mutations Causing Mitochondrial Disease. Cell Rep. 2016;16:2980–2990.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. Jurkute N, Yu-Wai-Man P. Leber hereditary optic neuropathy: bridging the translational gap. Curr Opin Ophthalmol. 2017;28:403–409.

    PubMed  PubMed Central  Article  Google Scholar 

  3. Yu-Wai-Man P, Griffiths PG, Hudson G, Chinnery PF. Inherited mitochondrial optic neuropathies. J Med Genet. 2009;46:145–58.

    CAS  PubMed  Article  Google Scholar 

  4. Rasool N, Lessell S, Cestari DM. Leber Hereditary Optic Neuropathy: Bringing the Lab to the Clinic. Semin Ophthalmol. 2016;31:107–16.

    PubMed  Article  Google Scholar 

  5. Harding AE, Sweeney MG, Govan GG, Riordan-Eva P. Pedigree analysis in Leber hereditary optic neuropathy families with a pathogenic mtDNA mutation. Am J Hum Genet. 1995;57:77–86.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Yu-Wai-Man P, Votruba M, Moore AT, Chinnery PF. Treatment strategies for inherited optic neuropathies: past, present and future. Eye. 2014;28:521–37.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  7. Newman NJ, Biousse V. Hereditary optic neuropathies. Eye. 2004;18:1144–60.

    CAS  PubMed  Article  Google Scholar 

  8. Jankauskaite E, Bartnik E, Kodron A. Investigating Leber’s hereditary optic neuropathy: Cell models and future perspectives. Mitochondrion. 2017;32:19–26.

    CAS  PubMed  Article  Google Scholar 

  9. Klopstock T, Metz G, Yu-Wai-Man P, Buchner B, Gallenmuller C, Bailie M, et al. Persistence of the treatment effect of idebenone in Leber’s hereditary optic neuropathy. Brain. 2013;136:e230.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Guy J, Feuer WJ, Davis JL, Porciatti V, Gonzalez PJ, Koilkonda RD, et al. Gene Therapy for Leber Hereditary Optic Neuropathy: Low- and Medium-Dose Visual Results. Ophthalmology. 2017;124:1621–1634.

    PubMed  Article  Google Scholar 

  11. Yu-Wai-Man P, Newman NJ, Carelli V, Moster ML, Biousse V, Sadun AA, et al. Bilateral visual improvement with unilateral gene therapy injection for Leber hereditary optic neuropathy. Sci Transl Med. 2020;12:eaaz7423.

    CAS  PubMed  Article  Google Scholar 

  12. Weiss JN, Levy S, Benes SC. Stem Cell Ophthalmology Treatment Study (SCOTS): bone marrow-derived stem cells in the treatment of Leber’s hereditary optic neuropathy. Neural Regen Res. 2016;11:1685–1694.

    PubMed  PubMed Central  Article  Google Scholar 

  13. Rahman S. Emerging aspects of treatment in mitochondrial disorders. J Inherit Metab Dis. 2015;38:641–53.

    CAS  PubMed  Article  Google Scholar 

  14. Guy J, Qi X, Pallotti F, Schon EA, Manfredi G, Carelli V, et al. Rescue of a mitochondrial deficiency causing Leber Hereditary Optic Neuropathy. Ann Neurol. 2002;52:534–42.

    CAS  PubMed  Article  Google Scholar 

  15. Qi X, Sun L, Lewin AS, Hauswirth WW, Guy J. The mutant human ND4 subunit of complex I induces optic neuropathy in the mouse. Investig Ophthalmol Vis Sci. 2007;48:1–10.

    Article  Google Scholar 

  16. Koilkonda R, Yu H, Talla V, Porciatti V, Feuer WJ, Hauswirth WW, et al. LHON gene therapy vector prevents visual loss and optic neuropathy induced by G11778A mutant mitochondrial DNA: biodistribution and toxicology profile. Investig Ophthalmol Vis Sci. 2014;55:7739–53.

    CAS  Article  Google Scholar 

  17. Cwerman-Thibault H, Augustin S, Lechauve C, Ayache J, Ellouze S, Sahel JA, et al. Nuclear expression of mitochondrial ND4 leads to the protein assembling in complex I and prevents optic atrophy and visual loss. Mol Ther Methods Clin Dev. 2015;2:15003.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. Baracca A, Solaini G, Sgarbi G, Lenaz G, Baruzzi A, Schapira AH, et al. Severe impairment of complex I-driven adenosine triphosphate synthesis in leber hereditary optic neuropathy cybrids. Arch Neurol. 2005;62:730–6.

    PubMed  Article  Google Scholar 

  19. Cwerman-Thibault H, Augustin S, Ellouze S, Sahel JA, Corral-Debrinski M. Gene therapy for mitochondrial diseases: Leber Hereditary Optic Neuropathy as the first candidate for a clinical trial. C R Biol. 2014;337:193–206.

    PubMed  Article  Google Scholar 

  20. Feuer WJ, Schiffman JC, Davis JL, Porciatti V, Gonzalez P, Koilkonda RD, et al. Gene Therapy for Leber Hereditary Optic Neuropathy: Initial Results. Ophthalmology. 2016;123:558–70.

    PubMed  Article  Google Scholar 

  21. Koilkonda RD, Yu H, Chou TH, Feuer WJ, Ruggeri M, Porciatti V, et al. Safety and effects of the vector for the Leber hereditary optic neuropathy gene therapy clinical trial. JAMA Ophthalmol. 2014;132:409–20.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Guy J, Feuer WJ, Porciatti V, Schiffman J, Abukhalil F, Vandenbroucke R, et al. Retinal ganglion cell dysfunction in asymptomatic G11778A: Leber hereditary optic neuropathy. Investig Ophthalmol Vis Sci. 2014;55:841–8.

    CAS  Article  Google Scholar 

  23. Koilkonda RD, Guy J. Leber’s Hereditary Optic Neuropathy-Gene Therapy: From Benchtop to Bedside. J Ophthalmol. 2011;2011:179412.

    PubMed  Google Scholar 

  24. Bacman SR, Williams SL, Pinto M, Peralta S, Moraes CT. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat Med. 2013;19:1111–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, et al. A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 2020;583:631–637.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Lee H, Lee S, Baek G, Kim A, Kang BC, Seo H, et al. Mitochondrial DNA editing in mice with DddA-TALE fusion deaminases. Nat Commun. 2021;12:1190.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Yu H, Koilkonda RD, Chou TH, Porciatti V, Ozdemir SS, Chiodo V, et al. Gene delivery to mitochondria by targeting modified adenoassociated virus suppresses Leber’s hereditary optic neuropathy in a mouse model. Proc Natl Acad Sci USA. 2012;109:E1238–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu H, Ozdemir SS, Koilkonda RD, Chou TH, Porciatti V, Chiodo V, et al. Mutant NADH dehydrogenase subunit 4 gene delivery to mitochondria by targeting sequence-modified adeno-associated virus induces visual loss and optic atrophy in mice. Mol Vis. 2012;18:1668–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Yu H, Koilkonda RD, Chou TH, Porciatti V, Mehta A, Hentall ID, et al. Consequences of zygote injection and germline transfer of mutant human mitochondrial DNA in mice. Proc Natl Acad Sci USA. 2015;112:E5689–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu H, Porciatti V, Lewin A, Hauswirth W, Guy J. Longterm Reversal of Severe Visual Loss by Mitochondrial Gene Transfer in a Mouse Model of Leber Hereditary Optic Neuropathy. Sci Rep. 2018;8:5587.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Yu H, Sant DW, Wang G, Guy J. Mitochondrial Transfer of the Mutant Human ND6T14484C Gene Causes Visual Loss and Optic Neuropathy. Transl Vis Sci Technol. 2020;9:1.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. Porciatti V. The mouse pattern electroretinogram. Doc Ophthalmol. 2007;115:145–53.

    PubMed  PubMed Central  Article  Google Scholar 

  33. Yang X, Chou TH, Ruggeri M, Porciatti V. A new mouse model of inducible, chronic retinal ganglion cell dysfunction not associated with cell death. Investig Ophthalmol Vis Sci. 2013;54:1898–904.

    Article  CAS  Google Scholar 

  34. Ruggeri M, Wehbe H, Jiao S, Gregori G, Jockovich ME, Hackam A, et al. In vivo three-dimensional high-resolution imaging of rodent retina with spectral-domain optical coherence tomography. Investig Ophthalmol Vis Sci. 2007;48:1808–14.

    Article  Google Scholar 

  35. Weber-Lotfi F, Ibrahim N, Boesch P, Cosset A, Konstantinov Y, Lightowlers RN, et al. Developing a genetic approach to investigate the mechanism of mitochondrial competence for DNA import. Biochim Biophys Acta. 2009;1787:320–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Koulintchenko M, Temperley RJ, Mason PA, Dietrich A, Lightowlers RN. Natural competence of mammalian mitochondria allows the molecular investigation of mitochondrial gene expression. Hum Mol Genet. 2006;15:143–54.

    CAS  PubMed  Article  Google Scholar 

  37. Hussain SA, Yalvac ME, Khoo B, Eckardt S, McLaughlin KJ. Adapting CRISPR/Cas9 System for Targeting Mitochondrial Genome. Front Genet. 2021;12:627050.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Wang Y, Hu LF, Cui PF, Qi LY, Xing L, Jiang HL. Pathologically Responsive Mitochondrial Gene Therapy in an Allotopic Expression-Independent Manner Cures Leber’s Hereditary Optic Neuropathy. Adv Mater. 2021;33:e2103307.

    PubMed  Article  CAS  Google Scholar 

  39. Harvey AR, Kamphuis W, Eggers R, Symons NA, Blits B, Niclou S, et al. Intravitreal injection of adeno-associated viral vectors results in the transduction of different types of retinal neurons in neonatal and adult rats: a comparison with lentiviral vectors. Mol Cell Neurosci. 2002;21:141–57.

    CAS  PubMed  Article  Google Scholar 

  40. Martin KR, Quigley HA, Zack DJ, Levkovitch-Verbin H, Kielczewski J, Valenta D, et al. Gene therapy with brain-derived neurotrophic factor as a protection: retinal ganglion cells in a rat glaucoma model. Investig Ophthalmol Vis Sci. 2003;44:4357–65.

    Article  Google Scholar 

  41. Nickells RW, Schmitt HM, Maes ME, Schlamp CL. AAV2-Mediated Transduction of the Mouse Retina After Optic Nerve Injury. Investig Ophthalmol Vis Sci. 2017;58:6091–6104.

    CAS  Article  Google Scholar 

  42. Shevtsova Z, Malik JM, Michel U, Bahr M, Kugler S. Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol. 2005;90:53–9.

    CAS  PubMed  Article  Google Scholar 

  43. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature. 1981;290:470–4.

    CAS  PubMed  Article  Google Scholar 

  44. Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem. 2007;76:679–99.

    CAS  PubMed  Article  Google Scholar 

  45. Facucho-Oliveira JM, St John JC. The relationship between pluripotency and mitochondrial DNA proliferation during early embryo development and embryonic stem cell differentiation. Stem Cell Rev Rep. 2009;5:140–58.

    CAS  PubMed  Article  Google Scholar 

  46. Montoya J, Gaines GL, Attardi G. The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell. 1983;34:151–9.

    CAS  PubMed  Article  Google Scholar 

  47. Yu-Wai-Man P, Votruba M, Burte F, La Morgia C, Barboni P, Carelli V. A neurodegenerative perspective on mitochondrial optic neuropathies. Acta Neuropathol. 2016;132:789–806.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. Finsterer J, Zarrouk-Mahjoub S. Leber’s hereditary optic neuropathy is multiorgan not mono-organ. Clin Ophthalmol. 2016;10:2187–2190.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Pilz YL, Bass SJ, Sherman J. A Review of Mitochondrial Optic Neuropathies: From Inherited to Acquired Forms. J Optometry. 2017;10:205–214.

    Article  Google Scholar 

  50. Sadun AA, La Morgia C, Carelli V. Mitochondrial optic neuropathies: our travels from bench to bedside and back again. Clin Exp Ophthalmol. 2013;41:702–12.

    PubMed  Google Scholar 

  51. Wang MY, Sadun AA. Drug-related mitochondrial optic neuropathies. J Neuro-ophthalmol. 2013;33:172–8.

    CAS  Article  Google Scholar 

  52. Kroemer G, Galluzzi L, Brenner C. Mitochondrial membrane permeabilization in cell death. Physiol Rev. 2007;87:99–163.

    CAS  PubMed  Article  Google Scholar 

  53. Sadun AA. Mitochondrial optic neuropathies. J Neurol Neurosurg Psychiat. 2002;72:423–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Sadun AA, Win PH, Ross-Cisneros FN, Walker SO, Carelli V. Leber’s hereditary optic neuropathy differentially affects smaller axons in the optic nerve. Trans Am Ophthalmol Soc. 2000;98:223–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Wallace DC, Lott MT. Leber Hereditary Optic Neuropathy: Exemplar of an mtDNA Disease. Handb Exp Pharmacol. 2017;240:339–376.

    CAS  PubMed  Article  Google Scholar 

  56. Theodorou-Kanakari A, Karampitianis S, Karageorgou V, Kampourelli E, Kapasakis E, Theodossiadis P, et al. Current and Emerging Treatment Modalities for Leber’s Hereditary Optic Neuropathy: A Review of the Literature. Adv Ther. 2018;35:1510–1518.

    PubMed  PubMed Central  Article  Google Scholar 

  57. Asanad S, Meer E, Tian JJ, Fantini M, Nassisi M, Sadun AA. Leber’s hereditary optic neuropathy: Severe vascular pathology in a severe primary mutation. Intractable Rare Dis Res. 2019;8:52–55.

    PubMed  PubMed Central  Article  Google Scholar 

  58. Yu-Wai-Man P, Chinnery PF Leber Hereditary Optic Neuropathy. In Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G et al., editors. Seattle (WA): GeneReviews((R)); 2021.

  59. Yu-Wai-Man P, Turnbull DM, Chinnery PF. Leber hereditary optic neuropathy. J Med Genet. 2002;39:162–9.

    CAS  PubMed  Article  Google Scholar 

  60. Yu-Wai-Man P, Griffiths PG, Chinnery PF. Mitochondrial optic neuropathies—disease mechanisms and therapeutic strategies. Prog Retin Eye Res. 2011;30:81–114.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Carelli V, Ross-Cisneros FN, Sadun AA. Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res. 2004;23:53–89.

    CAS  PubMed  Article  Google Scholar 

  62. Carelli V, Ghelli A, Ratta M, Bacchilega E, Sangiorgi S, Mancini R, et al. Leber’s hereditary optic neuropathy: biochemical effect of 11778/ND4 and 3460/ND1 mutations and correlation with the mitochondrial genotype. Neurology. 1997;48:1623–32.

    CAS  PubMed  Article  Google Scholar 

  63. Lodi R, Taylor DJ, Tabrizi SJ, Kumar S, Sweeney M, Wood NW, et al. In vivo skeletal muscle mitochondrial function in Leber’s hereditary optic neuropathy assessed by 31P magnetic resonance spectroscopy. Ann Neurol. 1997;42:573–9.

    CAS  PubMed  Article  Google Scholar 

  64. Lodi R, Carelli V, Cortelli P, Iotti S, Valentino ML, Barboni P, et al. Phosphorus MR spectroscopy shows a tissue specific in vivo distribution of biochemical expression of the G3460A mutation in Leber’s hereditary optic neuropathy. J Neurol Neurosurg Psychiatry. 2002;72:805–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Yu-Wai-Man P. Therapeutic Approaches to Inherited Optic Neuropathies. Semin Neurol. 2015;35:578–86.

    PubMed  Article  Google Scholar 

  66. Yuan J, Zhang Y, Liu H, Wang D, Du Y, Tian Z, et al. Seven-Year Follow-up of Gene Therapy for Leber’s Hereditary Optic Neuropathy. Ophthalmology. 2020;127:1125–1127.

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the defining contributions of John Guy, MD (deceased), who invented mito-targeting AAV, designed and performed the research. His tireless efforts made this study possible. We also thank Dr. Marco Ruggeri and the Ophthalmic Biophysics Center of the University of Miami for providing OCT analysis techniques; Dr. Alfred S. Lewin and Mr. Vince A. Chiodo at the University of Florida for the MTSAAV package. The authors declare no competing interests. This study is supported by the National Eye Institute R01 EY 027414, R01 EY017141, R24 EY028785, P30 EY014801 Bascom Palmer Eye Institute Core Grant, and institutional support from the Retina Research Foundation (GR015009). R.K. Lee was partially supported by the Walter G. Ross Foundation, the Camiener Foundation Glaucoma Research Fund, and the Guiterrez Family Research Fund.

Author information

Authors and Affiliations

Authors

Contributions

JG and HY designed research; YL, JDE, DEA, SV, JG, and HY performed research; WWH contributed to new reagents/analytic tools; YL, NS, VP, RKL, and HY analyzed data; and VP, RKL, and HY wrote the paper.

Corresponding authors

Correspondence to Richard K. Lee or Hong Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Eastwood, J.D., Alba, D.E. et al. Gene therapy restores mitochondrial function and protects retinal ganglion cells in optic neuropathy induced by a mito-targeted mutant ND1 gene. Gene Ther 29, 368–378 (2022). https://doi.org/10.1038/s41434-022-00333-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-022-00333-6

Search

Quick links