Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Control of gene doping in human and horse sports

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Gene doping regulations in human and horse sports.

References

  1. Ma H, Marti-Gutierrez N, Park S-W, Wu J, Lee Y, Suzuki K, et al. Correction of a pathogenic gene mutation in human embryos. Nature. 2019;548:413–9.

    Article  Google Scholar 

  2. Moro LN, Viale DL, Bastón JI, Arnold V, Suvá M, Wiedenmann E, et al. Generation of myostatin edited horse embryos using CRISPR/Cas9 technology and somatic cell nuclear transfer. Sci Rep. 2020;10:15587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cheung HW, Wong KS, Lin VYC, Wan TSM, Ho ENM. A duplex qPCR assay for human erythropoietin (EPO) transgene to control gene doping in horses. Drug Test Anal. 2020;13:113–21.

    Article  PubMed  Google Scholar 

  4. Sugasawa T, Aoki K, Yanazawa K, Takekoshi K. Detection of multiple transgene fragments in a mouse model of gene doping based on plasmid vector using TaqMan-qPCR assay. Genes. 2020;11:750.

    Article  CAS  PubMed Central  Google Scholar 

  5. Moser DA, Braga L, Raso A, Zacchigna S, Giacca M, Simon P. Transgene detection by digital droplet PCR. PLoS One. 2014;9:e111781.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tozaki T, Ohnuma A, Kikuchi M, Ishige T, Kakoi H, Hirota KI, et al. Microfluidic Quantitative PCR Detection of 12 Transgenes from Horse Plasma for Gene Doping Control. Genes. 2020;11:457.

    Article  CAS  PubMed Central  Google Scholar 

  7. de Boer EN, van der Wouden PE, Johansson LF, van Diemen CC, Haisma HJ. A next-generation sequencing method for gene doping detection that distinguishes low levels of plasmid DNA against a background of genomic DNA. Gene Ther. 2019;26:338–46.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hirsch ML, Wolf SJ, Samulski RJ. Delivering transgenic DNA exceeding the carrying capacity of AAV vectors. Methods Mol Biol. 2016;1382:21–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barton ER, Morris L, Musaro A, Rosenthal N, Sweeney HL. Muscle-specific expression of insulin-like growth factor I counters muscle decline in mdx mice. J Cell Biol. 2002;157:137–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lippin Y, Dranitzki-Elhalel M, Brill-Almon E, Mei-Zahav C, Mizrachi S, Liberman Y, et al. Human erythropoietin gene therapy for patients with chronic renal failure. Blood. 2005;106:2280–6.

    Article  CAS  PubMed  Google Scholar 

  11. Song Y-H, Song JL, Delafontaine P, Godard M. The therapeutic potential of IGF-I in skeletal muscle repair. Trends Endocrinol Metab. 2013;24:310–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Martier R, Liefhebber JM, García-Osta A, Miniarikova J, Cuadrado-Tejedor M, Espelosin M, et al. Targeting RNA-mediated toxicity in C9orf72 ALS and/or FTD by RNAi-based gene therapy. Mol Ther Nucleic Acids. 2019;16:26–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Olsson B, Alberg L, Cullen NC, Michael E, Wahlgren L, Kroksmark AK, et al. NFL is a marker of treatment response in children with SMA treated with nusinersen. J Neurol. 2019;266:2129–36.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Hill EW, Gu J, Eivers SS, Fonseca RG, McGivney BA, Govindarajan P, et al. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in thoroughbred horses. PLoS One. 2010;5:e8645.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Bayarsaikhan O, Kawai N, Mori H, Kinouchi N, Nikawa T, Tanaka E. Co-administration of myostatin-targeting siRNA and ActRIIB-Fc fusion protein increases masseter muscle mass and fiber size. J Nutr Sci Vitaminol. 2017;63:244–8.

    Article  CAS  PubMed  Google Scholar 

  16. Khan T, Weber H, DiMuzio J, Matter A, Dogdas B, Shah T, et al. Silencing Myostatin using cholesterol-conjugated siRNAs induces muscle growth. Mol Ther Nucleic Acids. 2016;5:e342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337:816–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol. 2018;36:765–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pradhan A, Kalin TV, Kalinichenko VV. Genome editing for rare diseases. Curr Stem Cell Rep. 2020;6:41–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lino CA, Harper JC, Carney JP, Timlin JA. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv. 2018;25:1234–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kimberland ML, Hou W, Alfonso-Pecchio A, Wilson S, Rao Y, Zhang S, et al. Strategies for controlling CRISPR/Cas9 off-target effects and biological variations in mammalian genome editing experiments. J Biotechnol. 2018;284:91–101.

    Article  CAS  PubMed  Google Scholar 

  22. Tozaki T, Ohnuma A, Takasu M, Kikuchi M, Kakoi H, Hirota KI, et al. Droplet digital PCR detection of the erythropoietin transgene from horse plasma and urine for gene-doping control. Genes. 2019;10:243.

    Article  CAS  PubMed Central  Google Scholar 

  23. Tozaki T, Gamo S, Takasu M, Kikuchi M, Kakoi H, Hirota K, et al. Digital PCR detection of plasmid DNA administered to the skeletal muscle of a microminipig: a model case study for gene doping detection. BMC Res Notes. 2018;11:708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ni W, Guiner CL, Gernoux G, Penaud-Budloo M, Moullier P, Snyder RO. Longevity of rAAV vector and plasmid DNA in blood after intramuscular injection in nonhuman primates: implications for gene doping. Gene Ther. 2011;18:709–18.

    Article  CAS  PubMed  Google Scholar 

  25. Beiter T, Zimmermann M, Fragasso A, Hudemann J, Niess AM, Bitzer M, et al. Direct and long-term detection of gene doping in conventional blood samples. Gene Ther. 2011;18:225–31.

    Article  CAS  PubMed  Google Scholar 

  26. Baoutina A, Coldham T, Fuller B, Emslie KR. Improved detection of transgene and nonviral vectors in blood. Hum Gene Ther Methods. 2013;24:345–54.

    Article  CAS  PubMed  Google Scholar 

  27. Tozaki T, Ohnuma A, Takasu M, Nakamura K, Kikuchi M, Ishige T, et al. Detection of non-targeted transgenes by whole-genome resequencing for gene-doping control. Gene Ther. 2021;28:199–205.

    Article  CAS  PubMed  Google Scholar 

  28. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: structural variant discovery by integrated paired-end and split-read analysis. Bioinformatics. 2012;28:333–9.

    Article  Google Scholar 

  29. Tozaki T, Karasawa K, Minamijima Y, Ishii H, Kikuchi M, Kakoi H, et al. Detection of phosphorothioated (PS) oligonucleotides in horse plasma using a product ion (m/z 94.9362) derived from the PS moiety for doping control. BMC Res Notes. 2018;11:770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eckstein F. Phosphorothioates, essential components of therapeutic oligonucleotides. Nucleic Acid Ther. 2014;24:374–87.

    Article  CAS  PubMed  Google Scholar 

  31. Paßreiter A, Thomas A, Grogna N, Delahaut P, Thevis M. First steps toward uncovering gene doping with CRISPR/Cas by identifying SpCas9 in plasma via HPLC−HRMS/MS. Anal Chem. 2020;92:16322–8.

    Article  PubMed  Google Scholar 

  32. Gao G, Lebherz C, Weiner DJ, Grant R, Calcedo R, McCullough B, et al. Erythropoietin gene therapy leads to autoimmune anemia in macaques. Blood. 2004;103:3300–2.

    Article  CAS  PubMed  Google Scholar 

  33. Chenuaud P, Larcher T, Rabinowitz JE, Provost N, Cherel Y, Casadevall N, et al. Autoimmune anemia in macaques following erythropoietin gene therapy. Blood. 2004;103:3303–4.

    Article  CAS  PubMed  Google Scholar 

  34. Campbell MLH, McNamee MJ. Ethics, genetic technologies and equine sports: the prospect of regulation of a modified therapeutic use exemption policy. Sport Ethics Philos. 2020. https://doi.org/10.1080/17511321.2020.1737204.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruaki Tozaki.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tozaki, T., Hamilton, N.A. Control of gene doping in human and horse sports. Gene Ther 29, 107–112 (2022). https://doi.org/10.1038/s41434-021-00267-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-021-00267-5

Search

Quick links