Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Development of a laboratory scalable process for enhancing lentivirus production by transient transfection of HEK293 adherent cultures

Abstract

Transfection of surface adherent cells remain as a standard methodology for lentiviral production for early phase clinical studies and research purposes. Production today is based on transient co-transfection of three or four plasmids, where the viral elements are encoded separately for safety reasons. Assembly of functional lentiviral particles requires all plasmids to be efficiently transfected into each cell, a notable challenge with many currently available methods for transient transfection. We have previously demonstrated the significant improvement of cationic polymer-based transfection in various cell types using a combination of fusogenic lipids and histone deacetylase 6 inhibitor (Enhancers). In this report, we focused on the transfection step and the feasibility of improving lentiviral production using the Enhancers. After optimization of DNA amount and N/P ratio, transfection using seven commercial gene carriers showed comparable maximal efficiency of production with high cell viability. In the presence of Enhancers, the production of functional lentivirus using LPEI was increased by as much as tenfold and outperformed lentiviral production using Lipofectamine 3000. We demonstrate a scalable and optimized workflow where the use of the Enhancers significantly improved the lentiviral particle production in various HEK293 cell lines.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Determination of the transfection efficiencies of various commercial carriers in HEK293FT.
Fig. 2: Enhancers enhanced total protein production in HEK293FT transfected with PEIMAX (1 µg of DNA to 3 µL of PEIMAX).
Fig. 3: High amount of viral packaging mix and expression plasmid is detrimental to lentiviral production with PEIMAX-mediated transfection.
Fig. 4: Enhancers increased functional viral titre.
Fig. 5: Enhances significantly improved the quality of the lentiviral titres.
Fig. 6: Prolonged production of LV.
Fig. 7: Enhancers improved lentiviral production with different commercial packaging mix.
Fig. 8: Enhancers improved lentiviral production in HEK293 variants.

Similar content being viewed by others

References

  1. Vodicka MA. Determinants for lentiviral infection of non-dividing cells. Somatic Cell Mol Genet. 2001;26:35–49.

    CAS  Google Scholar 

  2. Lundstrom K. Viral vectors in gene therapy. Diseases. 2018;6:42.

    PubMed Central  Google Scholar 

  3. Kaiser AD, Assenmacher M, Schröder B, Meyer M, Orentas R, Bethke U, et al. Towards a commercial process for the manufacture of genetically modified T cells for therapy. Cancer Gene Ther. 2015;22:72.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Levine BL, Miskin J, Wonnacott K, Keir C. Global manufacturing of CAR T cell therapy. Mol Ther Methods Clin Dev. 2017;4:92–101.

    CAS  PubMed  Google Scholar 

  5. Alexandra McCarron MD, Parsons David. Scale-up of lentiviral vectors for gene therapy: advances and challenges. Cell Gene Ther Insights. 2017;3:719–29.

    Google Scholar 

  6. Subklewe M, von Bergwelt-Baildon M, Humpe A. Chimeric antigen receptor T cells: a race to revolutionize cancer therapy. Transfus Med Hemother. 2019;46:15–24.

    PubMed  PubMed Central  Google Scholar 

  7. Stripecke R, Koya RC, Ta HQ, Kasahara N, Levine AM. The use of lentiviral vectors in gene therapy of leukemia: combinatorial gene delivery of immunomodulators into leukemia cells by state-of-the-art vectors. Blood Cells, Mol Dis. 2003;31:28–37.

    CAS  Google Scholar 

  8. Jarraya B, Boulet S, Ralph GS, Jan C, Bonvento G, Azzouz M, et al. Dopamine gene therapy for Parkinson’s disease in a nonhuman primate without associated dyskinesia. Science Transl Med. 2009;1:2ra4.

    Google Scholar 

  9. White M, Whittaker R, Gandara C, Stoll EA. A guide to approaching regulatory considerations for lentiviral-mediated gene therapies. Hum Gene Ther Methods. 2017;28:163–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Srinivasakumar N. HIV-1 vector systems. Somatic Cell Mol Genet. 2001;26:51–81.

    CAS  Google Scholar 

  11. Barde I, Salmon P, Trono D. Production and titration of lentiviral vectors. In: Current protocols in neuroscience. John Wiley & Sons, Ltd.; 2010. Chapter 4:Unit 4.21.

  12. Morita S, Kojima T, Kitamura T. Plat-E: an efficient and stable system for transient packaging of retroviruses. Gene Ther. 2000;7:1063–6.

    Article  CAS  PubMed  Google Scholar 

  13. Clark KR. Recent advances in recombinant adeno-associated virus vector production. Kidney Int. 2002;61 Suppl 1:S9–15.

    PubMed  Google Scholar 

  14. Zhou H, Liu ZG, Sun ZW, Huang Y, Yu WY. Generation of stable cell lines by site-specific integration of transgenes into engineered Chinese hamster ovary strains using an FLP-FRT system. J Biotechnol. 2010;147:122–9.

    CAS  PubMed  Google Scholar 

  15. Hélio A, Tomás AFR, Alves PM, Coroadinha AS. Lentiviral gene therapy vectors: challenges and future directions. In: Gene therapy. IntechOpen; 2013. https://www.intechopen.com/books/gene-therapy-tools-and-potential-applications/lentiviral-gene-therapy-vectors-challenges-and-future-directions.

  16. Klages N, Zufferey R, Trono D. A stable system for the high-titer production of multiply attenuated lentiviral vectors. Mol Ther. 2000;2:170–6.

    CAS  PubMed  Google Scholar 

  17. Farson D, Witt R, McGuinness R, Dull T, Kelly M, Song J, et al. A new-generation stable inducible packaging cell line for lentiviral vectors. Hum Gene Ther. 2001;12:981–97.

    CAS  PubMed  Google Scholar 

  18. Tang Y, Garson K, Li LI, Vanderhyden BC. Optimization of lentiviral vector production using polyethylenimine-mediated transfection. Oncol Lett. 2015;9:55–62.

    PubMed  Google Scholar 

  19. Karolewski BA, Watson DJ, Parente MK, Wolfe JH. Comparison of transfection conditions for a lentivirus vector produced in large volumes. Hum Gene Ther. 2003;14:1287–96.

    CAS  PubMed  Google Scholar 

  20. Coleman JE, Huentelman MJ, Kasparov S, Metcalfe BL, Paton JF, Katovich MJ, et al. Efficient large-scale production and concentration of HIV-1-based lentiviral vectors for use in vivo. Physiol Genom. 2003;12:221–8.

    CAS  Google Scholar 

  21. Kosaka Y, Kobayashi N, Fukazawa T, Totsugawa T, Maruyama M, Yong C, et al. Lentivirus-based gene delivery in mouse embryonic stem cells. Artif Organs. 2004;28:271–7.

    CAS  PubMed  Google Scholar 

  22. Shin KJ, Wall EA, Zavzavadjian JR, Santat LA, Liu J, Hwang JI, et al. A single lentiviral vector platform for microRNA-based conditional RNA interference and coordinated transgene expression. Proc Natl Acad Sci USA. 2006;103:13759–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Witting SR, Li L-H, Jasti A, Allen C, Cornetta K, Brady J, et al. Efficient large volume lentiviral vector production using flow electroporation. Hum Gene Ther. 2012;23:243–9.

    CAS  PubMed  Google Scholar 

  24. Merten O-W, Hebben M, Bovolenta C. Production of lentiviral vectors. Mol Ther Methods Clini Dev. 2016;3:16017.

    Google Scholar 

  25. Kuroda H, Kutner RH, Bazan NG, Reiser J. Simplified lentivirus vector production in protein-free media using polyethylenimine-mediated transfection. J Virol Methods. 2009;157:113–21.

    CAS  PubMed  Google Scholar 

  26. van der Loo JC, Wright JF. Progress and challenges in viral vector manufacturing. Hum Mol Genet. 2016;25:R42–52.

    PubMed  Google Scholar 

  27. Lee JH, Welsh MJ. Enhancement of calcium phosphate-mediated transfection by inclusion of adenovirus in coprecipitates. Gene Ther. 1999;6:676–82.

    CAS  PubMed  Google Scholar 

  28. Ramamoorth M, Narvekar A. Non viral vectors in gene therapy—an overview. J Clin Diagn Res. 2015;9:GE01–6.

    PubMed  PubMed Central  Google Scholar 

  29. Ho YK, Zhou LH, Tam KC, Too HP. Enhanced non-viral gene delivery by coordinated endosomal release and inhibition of beta-tubulin deactylase. Nucleic Acids Res. 2017;45:e38.

    PubMed  Google Scholar 

  30. Zhu L, Mahato RI. Lipid and polymeric carrier-mediated nucleic acid delivery. Expert Opin Drug Deliv. 2010;7:1209–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jäger V, Büssow K, Schirrmann T. Transient recombinant protein expression in mammalian cells. In: Al-Rubeai M, editor. Animal cell culture. Cham: Springer International Publishing; 2015. p. 27–64.

  32. Vaughan EE, Dean DA. Intracellular trafficking of plasmids during transfection is mediated by microtubules. Mol Ther. 2006;13:422–8.

    CAS  PubMed  Google Scholar 

  33. Zhou X, Liu Z, Wang H, Liu X, Zhou Z, Tang J, et al. SAHA (vorinostat) facilitates functional polymer-based gene transfection via upregulation of ROS and synergizes with TRAIL gene delivery for cancer therapy. J Drug Target. 2019;27:306–14.

    CAS  PubMed  Google Scholar 

  34. Vectalys. Vectalys’ know how. Vectalys. 2016. http://www.vectalys.com/lentiviral-vectors/vectalys-know-how/.

  35. Geraerts M, Willems S, Baekelandt V, Debyser Z, Gijsbers R. Comparison of lentiviral vector titration methods. BMC Biotechnol. 2006;6:34.

    PubMed  PubMed Central  Google Scholar 

  36. Gandara C, Affleck V, Stoll EA. Manufacture of third-generation lentivirus for preclinical use, with process development considerations for translation to good manufacturing practice. Hum Gene Ther Methods. 2018;29:1–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Valkama AJ, Leinonen HM, Lipponen EM, Turkki V, Malinen J, Heikura T, et al. Optimization of lentiviral vector production for scale-up in fixed-bed bioreactor. Gene Ther. 2018;25:39–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rout-Pitt N, McCarron A, McIntyre C, Parsons D, Donnelley M. Large-scale production of lentiviral vectors using multilayer cell factories. J Biol Methods. 2018;5:e90.

    PubMed  PubMed Central  Google Scholar 

  39. Tomás HA, Rodrigues AF, Carrondo MJT, Coroadinha AS. LentiPro26: novel stable cell lines for constitutive lentiviral vector production. Sci Rep. 2018;8:5271.

    PubMed  PubMed Central  Google Scholar 

  40. Zufferey R. Production of lentiviral vectors. Curr Top Microbiol Immunol. 2002;261:107–21.

    CAS  PubMed  Google Scholar 

  41. Segura MM, Garnier A, Durocher Y, Ansorge S, Kamen A. New protocol for lentiviral vector mass production. Methods Mol Biol. 2010;614:39–52.

    CAS  PubMed  Google Scholar 

  42. McCarron A, Donnelley M, McIntyre C, Parsons D. Challenges of up-scaling lentivirus production and processing. J Biotechnol. 2016;240:23–30.

    CAS  PubMed  Google Scholar 

  43. Kolata G. Gene therapy hits a peculiar roadblock: a virus shortage. New York Times; 2017. https://www.nytimes.com/2017/11/27/health/gene-therapy-virus-shortage.html.

  44. Hornstein BD, Roman D, Arévalo-Soliz LM, Engevik MA, Zechiedrich L. Effects of circular DNA length on transfection efficiency by electroporation into HeLa cells. PloS ONE. 2016;11:e0167537–e.

    PubMed  PubMed Central  Google Scholar 

  45. Valkama AJ, Leinonen HM, Lipponen EM, Turkki V, Malinen J, Heikura T, et al. Optimization of lentiviral vector production for scale-up in fixed-bed bioreactor. Gene Ther. 2017;25:39.

    PubMed  Google Scholar 

  46. Ansorge S, Lanthier S, Transfiguracion J, Durocher Y, Henry O, Kamen A. Development of a scalable process for high-yield lentiviral vector production by transient transfection of HEK293 suspension cultures. J Gene Med. 2009;11:868–76.

    CAS  PubMed  Google Scholar 

  47. Pelascini LP, Janssen JM, Goncalves MA. Histone deacetylase inhibition activates transgene expression from integration-defective lentiviral vectors in dividing and non-dividing cells. Hum Gene Ther. 2013;24:78–96.

    CAS  PubMed  Google Scholar 

  48. Jaalouk DE, Crosato M, Brodt P, Galipeau J. Inhibition of histone deacetylation in 293GPG packaging cell line improves the production of self-inactivating MLV-derived retroviral vectors. Virol J. 2006;3:27. -

    PubMed  PubMed Central  Google Scholar 

  49. Loew R, Selevsek N, Fehse B, von Laer D, Baum C, Fauser A, et al. Simplified generation of high-titer retrovirus producer cells for clinically relevant retroviral vectors by reversible inclusion of a lox-P-flanked marker gene. Mol Ther. 2004;9:738–46.

    CAS  PubMed  Google Scholar 

  50. Marrero-Hernández S, Márquez-Arce D, Cabrera-Rodríguez R, Estévez-Herrera J, Pérez-Yanes S, Barroso-González J, et al. HIV-1 Nef targets HDAC6 to assure viral production and virus. Infection. 2019;10:2437.

    Google Scholar 

  51. Chan LM, Coutelle C, Themis M. A novel human suspension culture packaging cell line for production of high-titre retroviral vectors. Gene Ther. 2001;8:697–703.

    CAS  PubMed  Google Scholar 

  52. Gasmi M, Glynn J, Jin MJ, Jolly DJ, Yee JK, Chen ST. Requirements for efficient production and transduction of human immunodeficiency virus type 1-based vectors. J Virol. 1999;73:1828–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Angelo Luis Caron VP-C, Ansorge Sven, Covas DimasTadeu, Kamen Amine, Swiech Kamilla. Production of lentiviral vectors encoding recombinant factor VIII expression in serum-free suspension cultures. Braz Arch Biol Technol. 2015;58:923–8.

    Google Scholar 

  54. Gloger I, Arad G, Panet A. Regulation of Moloney murine leukemia virus replication in chronically infected cells arrested at the G0/G1 phase. J Virol. 1985;54:844–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Sena-Esteves M, Tebbets JC, Steffens S, Crombleholme T, Flake AW. Optimized large-scale production of high titer lentivirus vector pseudotypes. J Virol Methods. 2004;122:131–9.

    CAS  PubMed  Google Scholar 

  56. Chen Y, Ott CJ, Townsend K, Subbaiah P, Aiyar A, Miller WM. Cholesterol supplementation during production increases the infectivity of retroviral and lentiviral vectors pseudotyped with the vesicular stomatitis virus glycoprotein (VSV-G). Biochem Eng J. 2009;44:199–207.

    CAS  PubMed  Google Scholar 

  57. Rodrigues A, Alves PM, Coroadinha A. Production of retroviral and lentiviral gene therapy vectors: challenges in the manufacturing of lipid enveloped virus. In: Viral gene therapy. IntechOpen; 2011. https://www.intechopen.com/books/viral-gene-therapy/production-of-retroviral-and-lentiviral-gene-therapy-vectors-challenges-in-the-manufacturing-of-lipi.

  58. Guo W, Lee RJ. Efficient gene delivery using anionic liposome-complexed polyplexes (LPDII). Biosci Rep. 2000;20:419–32.

    CAS  PubMed  Google Scholar 

  59. van de Wetering P, Cherng J-Y, Talsma H, Hennink WE. Relation between transfection efficiency and cytotoxicity of poly(2-(dimethylamino)ethyl methacrylate)/plasmid complexes. J Control Release. 1997;49:59–69.

    Google Scholar 

  60. Huh SH, Do HJ, Lim HY, Kim DK, Choi SJ, Song H, et al. Optimization of 25 kDa linear polyethylenimine for efficient gene delivery. Biologicals. 2007;35:165–71.

    CAS  PubMed  Google Scholar 

  61. Hanawa H, Yamamoto M, Zhao H, Shimada T, Persons DA. Optimized lentiviral vector design improves titer and transgene expression of vectors containing the chicken β-globin locus HS4 insulator element. Mol Ther. 2009;17:667–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Segura MM, Mangion M, Gaillet B, Garnier A. New developments in lentiviral vector design, production and purification. Expert Opin Biol Ther. 2013;13:987–1011.

    CAS  PubMed  Google Scholar 

  63. Storck A, Ludtke J, Kopp L, Juckem L. Development and optimization of a high titer recombinant lentivirus system. BioTechniques. 2017;63:136–8.

    CAS  PubMed  Google Scholar 

  64. Gelinas JF, Davies LA, Gill DR, Hyde SC. Assessment of selected media supplements to improve F/HN lentiviral vector production yields. Sci Rep. 2017;7:10198.

    PubMed  PubMed Central  Google Scholar 

  65. Gabrielson NP, Pack DW. Acetylation of polyethylenimine enhances gene delivery via weakened polymer/DNA interactions. Biomacromolecules. 2006;7:2427–35.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is funded and supported by SMART Innovation Grant, Technology Adoption Programme and the Department of Biochemistry (National University of Singapore), respectively. The authors would like to thank Justin Tan Bing Quan for his contribution in assisting this study by producing the materials and conducting experiments.

Funding

The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. This project is supported by Yong Loo Lin School of Medicine, Adhoc funding from the National University Health System (NUHSRO/2019/085) and SMART Innovation Centre (Grant number: ING-000144 BIO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. K. Ho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ho, Y.K., Too, H.P. Development of a laboratory scalable process for enhancing lentivirus production by transient transfection of HEK293 adherent cultures. Gene Ther 27, 482–494 (2020). https://doi.org/10.1038/s41434-020-0152-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41434-020-0152-x

This article is cited by

Search

Quick links