Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

HIV-based lentivirus-mediated vasoactive intestinal peptide gene delivery protects against DIO animal model of Type 2 diabetes

Abstract

Type 2 diabetes mellitus (T2DM) is characterised by insulin resistance, glucose intolerance and beta cell loss leading to hyperglycemia. Vasoactive intestinal peptide (VIP) has been regarded as a novel therapeutic agent for the treatment of T2DM because of its insulinotropic and anti-inflammatory properties. Despite these beneficial properties, VIP is extremely sensitive to peptidases (DPP-4) requiring constant infusion or multiple injections to observe any therapeutic benefit. Thus, we constructed an HIV-based lentiviral vector encoding human VIP (LentiVIP) to test the therapeutic efficacy of VIP peptide in a diet-induced obesity (DIO) animal model of T2DM. VIP gene expression was shown by immunocytochemistry (ICC) and VIP peptide secretion was confirmed by ELISA both in HepG2 liver and MIN6 pancreatic beta cell lines. Functional properties of VIP were demonstrated by cAMP production assay and glucose-stimulated insulin secretion test (GSIS). Intraperitoneal (IP) delivery of LentiVIP vectors into mice significantly increased serum VIP concentrations compared to control mice. Most importantly, LentiVIP delivery in DIO animal model of T2DM resulted in improved insulin sensitivity, glucose tolerance and protection against STZ-induced diabetes in addition to reduction in serum triglyceride/cholesterol levels. Collectively, these data suggest LentiVIP delivery should be evaluated as an experimental therapeutic approach for the treatment of T2DM.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Sanlioglu A, Altunbas H, Balci M, Griffith T, Sanlioglu S. Insulin gene therapy from design to beta cell generation. Expert Rev Mol Med. 2012;14:e18.

    Article  Google Scholar 

  2. 2.

    Ahren B, Pacini G. Islet adaptation to insulin resistance: mechanisms and implications for intervention. Diabetes Obes Metab. 2005;7:2–8.

    CAS  Article  Google Scholar 

  3. 3.

    Sanlioglu A, Altunbas H, Balci M, Griffith T, Sanlioglu S. Clinical utility of insulin and insulin analogs. Islets. 2013;5:67–78.

    Article  Google Scholar 

  4. 4.

    Tasyurek H, Altunbas H, Balci M, Sanlioglu S. Incretins: Their physiology and application in the treatment of diabetes mellitus. Diabetes Metab Res Rev. 2014;30:354–71.

    CAS  Article  Google Scholar 

  5. 5.

    Ahren B, Holst J, Mari A. Characterization of GLP-1 effects on beta-cell function after meal ingestion in humans. Diabetes Care. 2003;26:2860–4.

    CAS  Article  Google Scholar 

  6. 6.

    Gromada J, Brock B, Schmitz O, Rorsman P. Glucagon-like peptide-1: regulation of insulin secretion and therapeutic potential. Basic Clin Pharmacol Toxicol. 2004;95:252–62.

    CAS  Article  Google Scholar 

  7. 7.

    Tasyurek M, Altunbas H, Canatan H, Griffith T, Sanlioglu S. GLP-1-mediated gene therapy approaches for diabetes treatment. Expert Rev Mol Med. 2014;16:e7.

    Article  Google Scholar 

  8. 8.

    Ahren B, Holst J. The cephalic insulin response to meal ingestion in humans is dependent on both cholinergic and noncholinergic mechanisms and is important for postprandial glycemia. Diabetes. 2001;50:1030–8.

    CAS  Article  Google Scholar 

  9. 9.

    Filipsson K, Sundler F, Hannibal J, Ahren B. PACAP and PACAP receptors in insulin producing tissues: localization and effects. Regul Pept. 1998;74:167–75.

    CAS  Article  Google Scholar 

  10. 10.

    Filipsson K, Kvist-Reimer M, Ahren B. The neuropeptide pituitary adenylate cyclase-activating polypeptide and islet function. Diabetes. 2001;50:1959–69.

    CAS  Article  Google Scholar 

  11. 11.

    Filipsson K, Tornoe K, Holst J, Ahren B. Pituitary adenylate cyclase-activating polypeptide stimulates insulin and glucagon secretion in humans. J Clin Endocrinol Metab. 1997;82:3093–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Ahren B, Lundquist I. Effects of vasoactive intestinal polypeptide (VIP), secretin and gastrin on insulin secretion in the mouse. Diabetologia. 1981;20:54–9.

    CAS  Article  Google Scholar 

  13. 13.

    Moody TW, Nuche-Berenguer B, Jensen RT. Vasoactive intestinal peptide/pituitary adenylate cyclase activating polypeptide, and their receptors and cancer. Curr Opin Endocrinol Diabetes Obes. 2016;23:38–47.

    CAS  Article  Google Scholar 

  14. 14.

    Sanlioglu A, Karacay B, Balci M, Griffith T, Sanlioglu S. Therapeutic potential of VIP vs PACAP in diabetes. J Mol Endocrinol. 2012;49:R157–67.

    CAS  Article  Google Scholar 

  15. 15.

    Harmar A, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna J, et al. Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol. 2012;166:4–17.

    CAS  Article  Google Scholar 

  16. 16.

    Ahren B. Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov. 2009;8:369–85.

    CAS  Article  Google Scholar 

  17. 17.

    Eliasson L, Ma X, Renstrom E, Barg S, Berggren P, Galvanovskis J, et al. SUR1 regulates PKA-independent cAMP-induced granule priming in mouse pancreatic B-cells. J Gen Physiol. 2003;121:181–97.

    CAS  Article  Google Scholar 

  18. 18.

    Sanlioglu S, Luleci G, Thomas KW. Simultaneous inhibition of Rac1 and IKK pathways sensitizes lung cancer cells to TNFalpha-mediated apoptosis. Cancer Gene Ther. 2001;8:897–905.

    CAS  Article  Google Scholar 

  19. 19.

    Terzioglu E, Bisgin A, Sanlioglu A, Ulker M, Yazisiz V, Tuzuner S, et al. Concurrent gene therapy strategies effectively destroy synoviocytes of patients with rheumatoid arthritis. Rheumatol (Oxf). 2007;46:783–9.

    CAS  Article  Google Scholar 

  20. 20.

    Sanlioglu AD, Griffith TS, Omer A, Dirice E, Sari R, Altunbas HA, et al. Molecular mechanisms of death ligand-mediated immune modulation: a gene therapy model to prolong islet survival in type 1 diabetes. J Cell Biochem. 2008;104:710–20.

    CAS  Article  Google Scholar 

  21. 21.

    Havel P, Dunning B, Verchere C, Baskin D, O’Dorisio T, Taborsky GJ. Evidence that vasoactive intestinal polypeptide is a parasympathetic neurotransmitter in the endocrine pancreas in dogs. Regul Pept. 1997;71:163–70.

    CAS  Article  Google Scholar 

  22. 22.

    Zhu L, Tamvakopoulos C, Xie D, Dragovic J, Shen X, Fenyk-Melody J, et al. The role of dipeptidyl peptidase IV in the cleavage of glucagon family peptides: in vivo metabolism of pituitary adenylate cyclase activating polypeptide-(1-38). J Biol Chem. 2003;278:22418–23.

    CAS  Article  Google Scholar 

  23. 23.

    Mentlein R. Dipeptidyl-peptidase IV (CD26)—role in the inactivation of regulatory peptides. Regul Pept. 1999;85:9–24.

    CAS  Article  Google Scholar 

  24. 24.

    Lambeir A, Durinx C, Proost P, Van Damme J, Scharpe S, De Meester I. Kinetic study of the processing by dipeptidyl-peptidase IV/CD26 of neuropeptides involved in pancreatic insulin secretion. FEBS Lett. 2001;507:327–30.

    CAS  Article  Google Scholar 

  25. 25.

    Tsutsumi M, Claus T, Liang Y, Li Y, Yang L, Zhu J, et al. A potent and highly selective VPAC2 agonist enhances glucose-induced insulin release and glucose disposal: a potential therapy for type 2 diabetes. Diabetes. 2002;51:1453–60.

    CAS  Article  Google Scholar 

  26. 26.

    Yung S, Dela Cruz F, Hamren S, Zhu J, Tsutsumi M, Bloom J, et al. Generation of highly selective VPAC2 receptor agonists by high throughput mutagenesis of vasoactive intestinal peptide and pituitary adenylate cyclase-activating peptide. J Biol Chem. 2003;278:10273–81.

    CAS  Article  Google Scholar 

  27. 27.

    Srinivasan K, Viswanad B, Asrat L, Kaul C, Ramarao P. Combination of high-fat diet-fed and low-dose streptozotocin-treated rat: a model for type 2 diabetes and pharmacological screening. Pharmacol Res. 2005;52:313–20.

    CAS  Article  Google Scholar 

  28. 28.

    Bertrand G, Puech R, Maisonnasse Y, Bockaert J, Loubatieres-Mariani M. Comparative effects of PACAP and VIP on pancreatic endocrine secretions and vascular resistance in rat. Br J Pharmacol. 1996;117:764–70.

    CAS  Article  Google Scholar 

  29. 29.

    Rachdi L, Marie J, Scharfmann R. Role for VPAC2 receptor-mediated signals in pancreas development. Diabetes. 2003;52:85–92.

    CAS  Article  Google Scholar 

  30. 30.

    Winzell M, Ahren B. Role of VIP and PACAP in islet function. Peptides. 2007;28:1805–13.

    CAS  Article  Google Scholar 

  31. 31.

    Ahren B. Role of pituitary adenylate cyclase-activating polypeptide in the pancreatic endocrine system. Ann N Y Acad Sci. 2008;1144:28–35.

    CAS  Article  Google Scholar 

  32. 32.

    Delgado M, Pozo D, Ganea D. The significance of vasoactive intestinal peptide in immunomodulation. Pharmacol Rev. 2004;56:249–90.

    CAS  Article  Google Scholar 

  33. 33.

    Gonzalez-Rey E, Anderson P, Delgado M. Emerging roles of vasoactive intestinal peptide: a new approach for autoimmune therapy. Ann Rheum Dis. 2007;66:iii70–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Delgado M, Abad C, Martinez C, Juarranz M, Arranz A, Gomariz R, et al. Vasoactive intestinal peptide in the immune system: potential therapeutic role in inflammatory and autoimmune diseases. J Mol Med (Berl). 2002;80:16–24.

    CAS  Article  Google Scholar 

  35. 35.

    Gonzalez-Rey E, Chorny A, Fernandez-Martin A, Ganea D, Delgado M. Vasoactive intestinal peptide generates human tolerogenic dendritic cells that induce CD4 and CD8 regulatory T cells. Blood. 2006;107:3632–8.

    CAS  Article  Google Scholar 

  36. 36.

    Herrera J, Fernandez-Montesinos R, Gonzalez-Rey E, Delgado M, Pozo D. Protective role for plasmid DNA-mediated VIP gene transfer in non-obese diabetic mice. Ann N Y Acad Sci. 2006;1070:337–41.

    CAS  Article  Google Scholar 

  37. 37.

    Abad C, Waschek J. Immunomodulatory roles of VIP and PACAP in models of multiple sclerosis. Curr Pharm Des. 2011;17:1025–35.

    CAS  Article  Google Scholar 

  38. 38.

    Lodde B, Delporte C, Goldsmith C, Tak P, Baum B. A recombinant adenoviral vector encoding functional vasoactive intestinal peptide. Biochem Biophys Res Commun. 2004;319:189–92.

    CAS  Article  Google Scholar 

  39. 39.

    Lodde B, Mineshiba F, Wang J, Cotrim A, Afione S, Tak P, et al. Effect of human vasoactive intestinal peptide gene transfer in a murine model of Sjogren’s syndrome. Ann Rheum Dis. 2006;65:195–200.

    CAS  Article  Google Scholar 

  40. 40.

    St Hilaire R, Kadowitz P, Jeter JJ. Adenoviral transfer of vasoactive intestinal peptide (VIP) gene inhibits rat aortic and pulmonary artery smooth muscle cell proliferation. Peptides. 2009;30:2323–9.

    Article  Google Scholar 

  41. 41.

    Petkov V, Mosgoeller W, Ziesche R, Raderer M, Stiebellehner L, Vonbank K, et al. Vasoactive intestinal peptide as a new drug for treatment of primary pulmonary hypertension. J Clin Invest. 2003;111:1339–46.

    CAS  Article  Google Scholar 

  42. 42.

    Doerschug K, Sanlioglu S, Flaherty DM, Wilson RL, Yarovinsky T, Monick MM, et al. First-generation adenovirus vectors shorten survival time in a murine model of sepsis. J Immunol. 2002;169:6539–45.

    CAS  Article  Google Scholar 

  43. 43.

    Dirice E, Sanlioglu AD, Kahraman S, Ozturk S, Balci MK, Omer A, et al. Adenovirus-mediated TRAIL gene (Ad5hTRAIL) delivery into pancreatic islets prolongs normoglycemia in streptozotocin-induced diabetic rats. Hum Gene Ther. 2009;20:1177–89.

    CAS  Article  Google Scholar 

  44. 44.

    Kahraman S, Dirice E, Sanlioglu A, Yoldas B, Bagci H, Erkilic M, et al. In vivo fluorescence imaging is well-suited for the monitoring of adenovirus directed transgene expression in living organisms. Mol Imaging Biol. 2010;12:278–85.

    Article  Google Scholar 

  45. 45.

    Kahraman S, Dirice E, Hapil F, Ertosun M, Ozturk S, Griffith T, et al. Tracing of islet graft survival by way of in vivo fluorescence imaging. Diabetes Metab Res Rev. 2011;27:575–83.

    CAS  Article  Google Scholar 

  46. 46.

    Sanlioglu S, Engelhardt JF. Cellular redox state alters recombinant adeno-associated virus transduction through tyrosine phosphatase pathways. Gene Ther. 1999;6:1427–37.

    CAS  Article  Google Scholar 

  47. 47.

    Sanlioglu S, Benson PK, Yang J, Atkinson EM, Reynolds T, Engelhardt JF. Endocytosis and nuclear trafficking of adeno-associated virus type 2 are controlled by rac1 and phosphatidylinositol-3 kinase activation. J Virol. 2000;74:9184–96.

    CAS  Article  Google Scholar 

  48. 48.

    Sanlioglu S, Benson P, Engelhardt JF. Loss of ATM function enhances recombinant adeno-associated virus transduction and integration through pathways similar to UV irradiation. Virology. 2000;268:68–78.

    CAS  Article  Google Scholar 

  49. 49.

    Sanlioglu S, Monick MM, Luleci G, Hunninghake GW, Engelhardt JF. Rate limiting steps of AAV transduction and implications for human gene therapy. Curr Gene Ther. 2001;1:137–47.

    CAS  Article  Google Scholar 

  50. 50.

    Elsner M, Terbish T, Jorns A, Naujok O, Wedekind D, Hedrich H, et al. Reversal of diabetes through gene therapy of diabetic rats by hepatic insulin expression via lentiviral transduction. Mol Ther. 2012;20:918–26.

    CAS  Article  Google Scholar 

  51. 51.

    Winzell M, Ahren B. The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes. 2004;53:S215–9.

    Article  Google Scholar 

  52. 52.

    Srinivasan K, Ramarao P. Animal models in type 2 diabetes research: an overview. Indian J Med Res. 2007;125:451–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Borboni P, Porzio O, Pierucci D, Cicconi S, Magnaterra R, Federici M, et al. Molecular and functional characterization of pituitary adenylate cyclase-activating polypeptide (PACAP-38)/vasoactive intestinal polypeptide receptors in pancreatic beta-cells and effects of PACAP-38 on components of the insulin secretory system. Endocrinology. 1999;140:5530–7.

    CAS  Article  Google Scholar 

  54. 54.

    Nguyen P, Leray V, Diez M, Serisier S, Le Bloc’h J, Siliart B, et al. Liver lipid metabolism. J Anim Physiol Anim Nutr (Berl). 2008;92:272–83.

    CAS  Article  Google Scholar 

  55. 55.

    Reuter TY. Diet-induced models for obesity and type 2 diabetes. Drug Discov Today: Dis Models. 2007;4:3–8.

    Google Scholar 

  56. 56.

    Hwang LL, Wang CH, Li TL, Chang SD, Lin LC, Chen CP, et al. Sex differences in high-fat diet-induced obesity, metabolic alterations and learning, and synaptic plasticity deficits in mice. Obes (Silver Spring). 2010;18:463–9.

    CAS  Article  Google Scholar 

  57. 57.

    Yang Y, Smith DL Jr, Keating KD, Allison DB, Nagy TR. Variations in body weight, food intake and body composition after long-term high-fat diet feeding in C57BL/6J mice. Obes (Silver Spring). 2014;22:2147–55.

    CAS  Article  Google Scholar 

  58. 58.

    Sanlioglu AD, Dirice E, Elpek O, Korcum AF, Balci MK, Omer A, et al. High levels of endogenous tumor necrosis factor-related apoptosis-inducing ligand expression correlate with increased cell death in human pancreas. Pancreas. 2008;36:385–93.

    CAS  Article  Google Scholar 

  59. 59.

    Sanlioglu A, Dirice E, Elpek O, Korcum A, Ozdogan M, Suleymanlar I, et al. High TRAIL death receptor 4 and decoy receptor 2 expression correlates with significant cell death in pancreatic ductal adenocarcinoma patients. Pancreas. 2009;38:154–60.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This study is supported by grants from Akdeniz University Scientific Research Administration Division and the Scientific and Technological Research Council of Turkey (TUBITAK-111S157).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Salih Sanlioglu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tasyurek, H.M., Eksi, Y.E., Sanlioglu, A.D. et al. HIV-based lentivirus-mediated vasoactive intestinal peptide gene delivery protects against DIO animal model of Type 2 diabetes. Gene Ther 25, 269–283 (2018). https://doi.org/10.1038/s41434-018-0011-1

Download citation

Further reading

Search

Quick links