Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Innate immune responsive inflammation in development of progressive myopia

Abstract

Purpose

Inflammation has been implicated for development of myopia. It is not clear when inflammation is kicked in during the course of myopia, and what characteristics of the inflammation. In this study, we tested for cytokines from aqueous humour of eyes with wide spectrum of refractive status for profiling the inflammation.

Methods

Aqueous humour of 142 patient eyes were tested for soluble intercellular adhesion molecule 1 (sICAM-1), monocyte chemoattractant protein-1 (MCP-1), and transforming growth factor-beta 2 (TGF-β2) using an enzyme-linked immunosorbent assay (ELISA). Eye globe axial length of these patients ranged from emmetropia to high myopia.

Results

Of 142 patients, an average axial length is 25.51 ± 3.31 mm, with a range of 21.56–34.37 mm. There are 36 cases in lower 25 percentile, 37 cases in upper 25 percentile, and 69 case in the middle 50 percentile. sICAM-1 and MCP-1 were significantly higher in the eyes with staphyloma (407.48 pg/mL, 312.31 pg/mL, n = 33) or macular schisis (445.86 pg/mL,345.33 pg/mL, n = 19) than that in the eyes without these changes (206.44 pg/mL, 244.76 pg/mL, n = 107). All three cytokines level was significantly associated with eye globe axial in a positive mode while adjusting for the age and sex. Strength of the association was the greatest for sICAM-1 and the weakest for TGF- β2. MCP-1 was in between.

Conclusion

sICAM-1 and MCP-1 in ocular fluid may be indicative biomarkers for progressive high myopia and the underneath autoimmune inflammation. sICAM-1 may be used as a monitoring biomarker for development of pathologic myopia.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Distribution of myopic fundus changes, eye globe staphyloma, and macular schisis of all study patients.
Fig. 2: The predicted cytokines values were scatter-plotted against eye globe axial lengths; the scatter plots and regression lines were identified by the symbols for each specific cytokine.

Similar content being viewed by others

Data availability

Data is available on reasonable request.

References

  1. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036–42.

    Article  PubMed  Google Scholar 

  2. Zhao J, Xu X, Ellwein LB, Guan H, He M, Liu P, et al. Causes of visual impairment and blindness in the 2006 and 2014 nine-province surveys in rural China. Am J Ophthalmol. 2019;197:80–7.

    Article  PubMed  Google Scholar 

  3. Li Z, Liu R, Jin G, Ha J, Ding X, Xiao W, et al. Prevalence and risk factors of myopic maculopathy in rural southern China: the Yangxi eye study. Br J Ophthalmol. 2019;103:1797–802.

    PubMed  Google Scholar 

  4. Tedja MS, Haarman AEG, Meester-Smoor MA, Kaprio J, Mackey DA, Guggenheim JA, et al. IMI - myopia genetics report. Invest Ophthalmol Vis Sci. 2019;60:M89–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yuan J, Wu S, Wang Y, Pan S, Wang P, Cheng L. Inflammatory cytokines in highly myopic eyes. Sci Rep. 2019;9:3517.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Tang J, Liu H, Sun M, Zhang X, Chu H, Li Q, et al. Aqueous humor cytokine response in the contralateral eye after first-eye cataract surgery in patients with primary angle-closure glaucoma, high myopia or type 2 diabetes mellitus. Front Biosci. 2022;27:222.

    Article  CAS  Google Scholar 

  7. Yan W, Zhang Y, Cao J, Yan H. TGF-beta2 levels in the aqueous humor are elevated in the second eye of high myopia within two weeks after sequential cataract surgery. Sci Rep. 2022;12:17974.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Yamamoto Y, Miyazaki D, Sasaki S, Miyake K, Kaneda S, Ikeda Y, et al. Associations of inflammatory cytokines with choroidal neovascularization in highly myopic eyes. Retina. 2015;35:344–50.

    Article  PubMed  CAS  Google Scholar 

  9. Zhu X, Zhang K, He W, Yang J, Sun X, Jiang C, et al. Proinflammatory status in the aqueous humor of high myopic cataract eyes. Exp Eye Res. 2016;142:13–18.

    Article  PubMed  CAS  Google Scholar 

  10. Lin HJ, Wei CC, Chang CY, Chen TH, Hsu YA, Hsieh YC, et al. Role of chronic inflammation in myopia progression: clinical evidence and experimental validation. EBioMedicine. 2016;10:269–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Xu X, Fang Y, Yokoi T, Shinohara K, Hirakata A, Iwata T, et al. Posterior staphylomas in eyes with retinitis pigmentosa without high myopia. Retina. 2019;39:1299–304.

    Article  PubMed  Google Scholar 

  12. El Matri L, Falfoul Y, El Matri K, El Euch I, Ghali H, Habibi I, et al. Posterior staphylomas in non-highly myopic eyes with retinitis pigmentosa. Int Ophthalmol. 2020;40:2159–68.

    Article  PubMed  Google Scholar 

  13. Ohno-Matsui K, Jonas JB. Posterior staphyloma in pathologic myopia. Prog Retinal Eye Res. 2019;70:99–109.

    Article  Google Scholar 

  14. Wang XN, Zhao Q, Li DJ, Wang ZY, Chen W, Li YF, et al. Quantitative evaluation of primary retinitis pigmentosa patients using colour Doppler flow imaging and optical coherence tomography angiography. Acta Ophthalmol. 2019;97:E993–7.

    Article  PubMed  Google Scholar 

  15. Yang YJ, Peng J, Ying D, Peng QH. A brief review on the pathological role of decreased blood flow affected in retinitis pigmentosa. J Ophthalmol. 2018;2018:3249064.

    PubMed  PubMed Central  Google Scholar 

  16. Shimada N, Ohno-Matsui K, Harino S, Yoshida T, Yasuzumi K, Kojima A, et al. Reduction of retinal blood flow in high myopia. Graefes Arch Clin Exp Ophthalmol. 2004;242:284–8.

    Article  PubMed  Google Scholar 

  17. Liew G, Strong S, Bradley P, Severn P, Moore AT, Webster AR, et al. Prevalence of cystoid macular oedema, epiretinal membrane and cataract in retinitis pigmentosa. Br J Ophthalmol. 2019;103:1163–6.

    Article  PubMed  Google Scholar 

  18. Murakami Y, Ishikawa K, Nakao S, Sonoda KH. Innate immune response in retinal homeostasis and inflammatory disorders. Prog Retin Eye Res. 2020;74:100778.

    Article  PubMed  CAS  Google Scholar 

  19. Ten Berge JC, Fazil Z, van den Born I, Wolfs RCW, Schreurs MWJ, Dik WA, et al. Intraocular cytokine profile and autoimmune reactions in retinitis pigmentosa, age-related macular degeneration, glaucoma and cataract. Acta Ophthalmol. 2019;97:185–92.

    Article  PubMed  Google Scholar 

  20. Yokota H, Nagaoka T, Noma H, Ofusa A, Kanemaki T, Aso H, et al. Role of ICAM-1 in impaired retinal circulation in rhegmatogenous retinal detachment. Sci Rep. 2021;11:15393.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Taylor AW, Ng TF. Negative regulators that mediate ocular immune privilege. J Leukoc Biol. 2018;103:1179–87.

    Article  CAS  Google Scholar 

  22. Yoshida N, Ikeda Y, Notomi S, Ishikawa K, Murakami Y, Hisatomi T, et al. Clinical evidence of sustained chronic inflammatory reaction in retinitis pigmentosa. Ophthalmology. 2013;120:100–5.

    Article  PubMed  Google Scholar 

  23. Jones LA, Mitchell GL, Mutti DO, Hayes JR, Moeschberger ML, Zadnik K. Comparison of ocular component growth curves among refractive error groups in children. Invest Ophthalmol Vis Sci. 2005;46:2317–27.

    Article  PubMed  Google Scholar 

  24. Wong CW, Yanagi Y, Tsai ASH, Shihabuddeen WA, Cheung N, Lee SY, et al. Correlation of axial length and myopic macular degeneration to levels of molecular factors in the aqueous. Sci Rep. 2019;9:15708.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang JS, Da Wang J, Zhu GY, Li J, Xiong Y, Yusufu M, et al. The expression of cytokines in aqueous humor of high myopic patients with cataracts. Mol Vis. 2020;26:150–7.

    PubMed  PubMed Central  Google Scholar 

  26. Lu B, Yin HF, Tang QM, Wang W, Luo CQ, Chen XY, et al. Multiple cytokine analyses of aqueous humor from the patients with retinitis pigmentosa. Cytokine. 2020;127:154943.

    Article  PubMed  CAS  Google Scholar 

  27. Shin YJ, Nam WH, Park SE, Kim JH, Kim HK. Aqueous humor concentrations of vascular endothelial growth factor and pigment epithelium-derived factor in high myopic patients. Mol Vis. 2012;18:2265–70.

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Salom D, Diaz-Llopis M, Garcia-Delpech S, Udaondo P, Sancho-Tello M, Romero FJ. Aqueous humor levels of vascular endothelial growth factor in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2008;49:3499–502.

    Article  PubMed  Google Scholar 

  29. Yang D, Elner SG, Chen X, Field MG, Petty HR, Elner VM. MCP-1-activated monocytes induce apoptosis in human retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2011;52:6026–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Adamus G. Importance of autoimmune responses in progression of retinal degeneration initiated by gene mutations. Front Med. 2021;8:672444.

    Article  Google Scholar 

  31. Dolgin E. The myopia boom. Nature. 2015;519:276–8.

    Article  PubMed  CAS  Google Scholar 

  32. Smith EL, Kee CS, Ramamirtham R, Qiao-Grider Y, Hung LF. Peripheral vision can influence eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci. 2005;46:3965–72.

    Article  PubMed  Google Scholar 

  33. Zhang HY, Lam CSY, Tang WC, Leung M, To CH. Defocus incorporated multiple segments spectacle lenses changed the relative peripheral refraction: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2020;61:53.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Feldkaemper M, Schaeffel F. An updated view on the role of dopamine in myopia. Exp Eye Res. 2013;114:106–19.

    Article  PubMed  CAS  Google Scholar 

  35. Mao J-F, Liu S-Z. Mechanism of the DL-alpha-aminoadipic acid inhibitory effect on form-deprived myopia in guinea pig. Int J Ophthalmol. 2013;6:19–22.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. Berntsen DA, Barr CD, Mutti DO, Zadnik K. Peripheral defocus and myopia progression in myopic children randomly assigned to wear single vision and progressive addition lenses. Invest Ophthalmol Vis Sci. 2013;54:5761–70.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Chia A, Lu QS, Tan D. Five-year clinical trial on atropine for the treatment of myopia 2: myopia control with atropine 0.01% eyedrops. Ophthalmology. 2016;123:391–9.

    Article  PubMed  Google Scholar 

  38. Yam JC, Jiang Y, Tang SM, Law AKP, Chan JJ, Wong E, et al. Low-concentration atropine for myopia progression (LAMP) study: a randomized, double-blinded, placebo-controlled trial of 0.05%, 0.025%, and 0.01% atropine eye drops in myopia control. Ophthalmology. 2019;126:113–24.

    Article  PubMed  Google Scholar 

  39. Gupta N, Brown KE, Milam AH. Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res. 2003;76:463–71.

    Article  PubMed  CAS  Google Scholar 

  40. Sennlaub F, Auvynet C, Calippe B, Lavalette S, Poupel L, Hu SJ, et al. CCR2(+) monocytes infiltrate atrophic lesions in age-related macular disease and mediate photoreceptor degeneration in experimental subretinal inflammation in Cx3cr1 deficient mice. EMBO Mol Med. 2013;5:1775–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Witkowska AM, Borawska MH. Soluble intercellular adhesion molecule-1 (sICAM-1): an overview. Eur Cytokine Netw. 2004;15:91–98.

    PubMed  CAS  Google Scholar 

  42. Klok AM, Luyendijk L, Zaal MJ, Rothova A, Kijlstra A. Soluble ICAM-1 serum levels in patients with intermediate uveitis. Br J Ophthalmol. 1999;83:847–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Dewispelaere R, Lipski D, Foucart V, Bruyns C, Frere A, Caspers L, et al. ICAM-1 and VCAM-1 are differentially expressed on blood-retinal barrier cells during experimental autoimmune uveitis. Exp Eye Res. 2015;137:94–102.

    Article  PubMed  CAS  Google Scholar 

  44. Xu H, Forrester JV, Liversidge J, Crane IJ. Leukocyte trafficking in experimental autoimmune uveitis: breakdown of blood-retinal barrier and upregulation of cellular adhesion molecules. Invest Ophthalmol Vis Sci. 2003;44:226–34.

    Article  PubMed  Google Scholar 

  45. Hirano Y, Sakurai E, Matsubara A, Ogura Y. Suppression of ICAM-1 in retinal and choroidal endothelial cells by plasmid small-interfering RNAs in vivo. Invest Ophthalmol Vis Sci. 2010;51:508–15.

    Article  PubMed  Google Scholar 

  46. Maharaj ASR, Walshe TE, Saint-Geniez M, Venkatesha S, Maldonado AE, Himes NC, et al. VEGF and TGF-beta are required for the maintenance of the choroid plexus and ependyma. J Exp Med. 2008;205:491–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Liu YL, Wang LJ, Xu YY, Pang ZX, Mu GY. The influence of the choroid on the onset and development of myopia: from perspectives of choroidal thickness and blood flow. Acta Ophthalmol. 2021;99:730–8.

    Article  PubMed  Google Scholar 

  48. Zhou XT, Ye C, Wang XY, Zhou WH, Reinach P, Qu J. Choroidal blood perfusion as a potential “rapid predictive index” for myopia development and progression. Eye Vis. 2021;8:1.

    Article  CAS  Google Scholar 

  49. Herbort CP, Papadia M, Neri P. Myopia and inflammation. J Ophthalmic Vis Res. 2011;6:270–83.

    PubMed  PubMed Central  Google Scholar 

  50. Apte RS, Sinha D, Mayhew E, Wistow GJ, Niederkorn JY. Cutting edge: role of macrophage migration inhibitory factor in inhibiting NK cell activity and preserving immune privilege. J Immunol. 1998;160:5693–6.

    Article  PubMed  CAS  Google Scholar 

  51. Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharm. 2009;9:447–53.

    Article  CAS  Google Scholar 

  52. Jobling AI, Nguyen M, Gentle A, McBrien NA. Isoform-specific changes in scleral transforming growth factor-beta expression and the regulation of collagen synthesis during myopia progression. J Biol Chem. 2004;279:18121–6.

    Article  PubMed  CAS  Google Scholar 

  53. Seko Y, Shimokawa H, Tokoro T. Expression of bFGF and TGF-beta 2 in experimental myopia in chicks. Invest Ophthalmol Vis Sci. 1995;36:1183–7.

    PubMed  CAS  Google Scholar 

  54. Hsiao Y, Cao Y, Yue Y, Zhou J. Relationship between axial length and levels of TGF-β in the aqueous humor and plasma of myopic patients. Biomed Res Int. 2021;2021:8863637.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jia Y, Hu DN, Zhou J. Human aqueous humor levels of TGF- beta2: relationship with axial length. Biomed Res Int. 2014;2014:258591.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Zhejiang Health Science and Technology Program, 2021PY074 (Jianshu Yuan). Ningbo Yinzhou District Agricultural Social Science and Technology project, 2021AS0056 (Jianshu Yuan).

Author information

Authors and Affiliations

Authors

Contributions

Suqi Pan and Jianshu Yuan organised patients enroling, treatment protocol monitoring and data collection; Yuanhui Jin conducted ELISA assays and drafts manuscript; Xiaotian Liu, research coordination and research materials acquisition; Shanjun Wu and Yuwen Wang performed surgeries and sampled aqueous. Hongyan Yao assisted review of fundus images and myopic fundus classification. Lingyun Cheng designed the study, performed data analysis and interpretation, and performed critical revision of the manuscript. All authors contributed to writing of the manuscript and approved the final version.

Corresponding author

Correspondence to Lingyun Cheng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, S., Yuan, J., Jin, Y. et al. Innate immune responsive inflammation in development of progressive myopia. Eye (2024). https://doi.org/10.1038/s41433-024-02947-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41433-024-02947-z

Search

Quick links