Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Virtual reality headsets for perimetry testing: a systematic review

Abstract

Standard automated perimetery is considered the gold standard for evaluating a patient’s visual field. However, it is costly and requires a fixed testing environment. In response, perimetric devices using virtual reality (VR) headsets have emerged as an alternative way to measure visual fields in patients. This systematic review aims to characterize both novel and established VR headsets in the literature and explore their potential applications within visual field testing. A search was conducted using MEDLINE, Embase, CINAHL, and the Core Collection (Web of Science) for articles published until January 2023. Subject headings and keywords related to virtual reality and visual field were used to identify studies specific to this topic. Records were first screened by title/abstract and then by full text using predefined criteria. Data was extracted accordingly. A total of 2404 records were identified from the databases. After deduplication and the two levels of screening, 64 studies describing 36 VR headset perimetry devices were selected for extraction. These devices encompassed various visual field measurement techniques, including static and kinetic perimetry, with some offering vision rehabilitation capabilities. This review reveals a growing consensus that VR headset perimetry devices perform comparably to, or even better than, standard automated perimetry. They are better tolerated by patients in terms of gaze fixation, more cost-effective, and generally more accessible for patients with limited mobility.

摘要

标准自动视野仪被视作评估患者视野的金标准。然而, 它价格昂贵并且需要固定的测试环境。因此, 使用虚拟现实(VR)耳机的视野仪器成为测量患者视野的替代方法。本综述旨在描述文献中新颖的和成熟的的VR耳机, 并探索它们在视野测试中的潜在应用。使用MEDLINE、Embase、CINAHL和Core Collection(Web of Science)等数据库对2023年1月之前发表的文章进行检索。使用与虚拟现实和视野相关的主题标题和关键词来确定与该主题相关的研究。记录首先通过标题/摘要进行筛选, 然后使用预定义的标准进行全文筛选。提取相应数据。从数据库中共识别出2404条记录。经过删除重复数据和两级筛选后, 选择64项研究36个VR耳机视野测量装置进行提取。这些设备包括各种视野测量技术, 包括静态和动态视野测量, 其中有些提供视力康复功能。本综述揭示了一个日益增长的共识, 即VR耳机视野检查装置的性能与标准自动视野检查相当, 甚至更好。在固视方面它们更容易被患者耐受, 更具成本效益, 并且对行动受限的患者可行性更高。

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: PRISMA 2020 flow diagram of included studies.

Similar content being viewed by others

References

  1. Danesh-Meyer HV, Yap J, Frampton C, Savino PJ. Differentiation of compressive from glaucomatous optic neuropathy with spectral-domain optical coherence tomography. Ophthalmology. 2014;121:1516–23.

    Article  PubMed  Google Scholar 

  2. Katz J, Tielsch JM, Quigley HA, Sommer A. Automated perimetry detects visual field loss before manual Goldmann perimetry. Ophthalmology. 1995;102:21–6.

    Article  CAS  PubMed  Google Scholar 

  3. Trobe JD. The Physician’s Guide to Eye Care, 2nd, The Foundation of the American Academy of Ophthalmology, San Francisco 2001.

  4. Gardiner SK, Demirel S, Johnson CA. Is there evidence for continued learning over multiple years in perimetry? Optom Vis Sci. 2008;85:1043–8.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bengtsson B, Heijl A. False-negative responses in glaucoma perimetry: indicators of patient performance or test reliability? Investig Ophthalmol Vis Sci. 2000;41:2201–4.

    CAS  Google Scholar 

  6. Ichhpujani P, Thakur S, Sahi R, Kumar S. Validating tablet perimetry against standard humphrey visual field analyzer for glaucoma screening in Indian population. Indian J Ophthalmol. 2021;69:87.

    Article  PubMed  Google Scholar 

  7. Barsom EZ, Graafland M, Schijven MP. Systematic review on the effectiveness of augmented reality applications in medical training. Surg Endosc. 2016;30:4174–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kyaw BM, Saxena N, Posadzki P, Vseteckova J, Nikolaou CK, George PP, et al. Virtual reality for health professions education: systematic review and meta-analysis by the digital health education collaboration. J Med Internet Res. 2019;21:e12959.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Pur DR, Lee-Wing N, Bona MD. The use of augmented reality and virtual reality for visual field expansion and visual acuity improvement in low vision rehabilitation: a systematic review. Graefes Arch Clin Exp Ophthalmol. 2023;261:1743–55.

    Article  PubMed  Google Scholar 

  10. Lieze M, Jelle VC, Benedicte D, Nico V, de W, Mario M, et al. Using virtual reality to investigate physical environmental factors related to cycling in older adults: a comparison between two methodologies. J Transp Health. 2020;19:100921.

    Article  Google Scholar 

  11. Montelongo M, Gonzalez A, Morgenstern F, Donahue SP, Groth SL. A virtual reality-based automated perimeter, device, and pilot study. Transl Vis Sci Technol. 2021;10:20.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Prager AJ, Kang JM, Tanna AP. Advances in perimetry for glaucoma. Curr Opin Ophthalmol. 2021;32:92.

    Article  PubMed  Google Scholar 

  13. Shen J, Xiang H, Luna J, Grishchenko A, Patterson J, Strouse RV, et al. Virtual reality–based executive function rehabilitation system for children with traumatic brain injury: design and usability study. JMIR Serious Games. 2020;8:e16947.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cavedoni S, Cipresso P, Mancuso V, Bruni F, Pedroli E. Virtual reality for the assessment and rehabilitation of neglect: where are we now? A 6-year review update. Virtual Real. 2022;26:1663–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wilson CJ, Soranzo A. The use of virtual reality in psychology: a case study in visual perception. Comput Math Methods Med. 2015;2015:e151702.

    Article  Google Scholar 

  16. Stapelfeldt J, Kucur SS, Huber N, Höhn R, Sznitman R. Virtual reality-based and conventional visual field examination comparison in healthy and glaucoma patients. Transl Vis Sci Technol. 2021;10:10.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wroblewski D, Francis BA, Sadun A, Vakili G, Chopra V. Testing of visual field with virtual reality goggles in manual and visual grasp modes. BioMed Res Int. 2014;2014:e206082.

    Article  Google Scholar 

  18. Prea SM, Kong YXG, Mehta A, He M, Crowston JG, Gupta V, et al. Six-month longitudinal comparison of a portable tablet perimeter with the humphrey field analyzer. Am J Ophthalmol. 2018;190:9–16.

    Article  PubMed  Google Scholar 

  19. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 2021;10:89.

    Article  PubMed  PubMed Central  Google Scholar 

  20. McKeown S, Mir ZM. Considerations for conducting systematic reviews: evaluating the performance of different methods for de-duplicating references. Syst Rev. 2021;10:38.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Peterson NE, Mekler JA, Crowe S. Visual field screening after stroke with virtual reality headsets [Internet]. PM&R Meeting Abstracts. 2019 [cited 2023 Apr 11]. Available from: https://pmrjabstracts.org/abstract/visual-field-screening-after-stroke-with-virtual-reality-headsets/.

  22. Hotta K, Prima ODA, Imabuchi T, Ito H. VR-HMD eye tracker in active visual field testing. IEEE Conf Virtual Real 3D Use Interfaces (VR). 2019;2019:1843–7.

    Google Scholar 

  23. Turner ML, Chia ZK, Nguyen A, Kong AW, Backus BT, Deiner M, et al. Remote longitudinal monitoring of glaucoma using virtual reality-based oculokinetic perimetry. Investig Ophthalmol Vis Sci. 2021;62:3484.

    Google Scholar 

  24. Nanti NB, Lenoci J. Comparison of virtual reality visual field testing to humphrey visual field testing in an academic ophthalmology practice. Investig Ophthalmol Vis Sci. 2021;62:3486.

    Google Scholar 

  25. Ramachandran R, Paranjpe V, Al-Aswad LA. A feasibility study for the use of virtual reality visual field testing for hospital-based ophthalmic consultations. Investig Ophthalmol Vis Sci. 2022;63:719–F0447.

    Google Scholar 

  26. Sayed A, Roongpoovapatr V, Eleiwa T, Kashem R, Abdel-Mottaleb M, Jumbo O, et al. Measurement of monocular and binocular visual field defects with a virtual reality head mounted display. Investig Ophthalmol Vis Sci. 2021;62:3512.

    Google Scholar 

  27. Sayed A, Roongpoovapatr V, Eleiwa T, Abou Shousha M, Parrish RK II. Repeatability assessment of monocular and binocular visual field measurements with a head mounted display. Investig Ophthalmol Vis Sci. 2022;63:2570–F0524.

    Google Scholar 

  28. Mazerand E, Le Renard M, Hue S, Lemée JM, Klinger E, Menei P. Intraoperative subcortical electrical mapping of the optic tract in awake surgery using a virtual reality headset. World Neurosurg. 2017;97:424–30.

    Article  PubMed  Google Scholar 

  29. Chen YT, Yeh PH, Cheng YC, Su WW, Hwang YS, Chen HSL, et al. Application and Validation of LUXIE: A Newly Developed Virtual Reality Perimetry Software. J Personal Med. 2022;12:1560.

    Article  Google Scholar 

  30. Razeghinejad R, Gonzalez-Garcia A, Myers JS, Katz LJ. Preliminary report on a novel virtual reality perimeter compared with standard automated perimetry. J Glaucoma. 2021;30:17–23.

    Article  PubMed  Google Scholar 

  31. Labkovich M, Warburton AJ, Ying S, Valliani AA, Kissel N, Serafini RA, et al. Virtual reality hemifield measurements for corrective surgery eligibility in ptosis patients: a pilot clinical trial. Transl Vis Sci Technol 2022;11:35.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Greenfield JA, Deiner M, Nguyen A, Wollstein G, Damato B, Backus BT, et al. Measurement reproducibility using vivid vision perimetry: a virtual reality-based mobile platform. Investig Ophthalmol Vis Sci. 2020;61:4800.

    Google Scholar 

  33. Greenfield JA, Deiner M, Nguyen A, Wollstein G, Damato B, Backus BT, et al. Virtual reality oculokinetic perimetry test reproducibility and relationship to conventional perimetry and OCT. Ophthalmol Sci. 2022;2:100105.

    Article  PubMed  Google Scholar 

  34. Eizenman M, Shi RB, Fee TLY, Mahsood YJ, Buys YM, Trope G. Visual field testing on a personal smartphone. Investig Ophthalmol Vis Sci. 2018;59:6029.

    Google Scholar 

  35. Heinzman Z, Alawa K, Marín-Franch I, Turpin A, Wall M. Validation of visual field results of a new open-source virtual reality headset. Investig Ophthalmol Vis Sci. 2022;63:1259–A0399.

    Google Scholar 

  36. Johnson C, Rady N, Lopez V, Mijares G, Durbin PM, Nicklin, et al. Correlation between SITA fast visual field strategy measurements and augmented reality-based heru re:vive visual field strategy measurements. Investig Ophthalmol Vis Sci 2022;63:1271–A0411.

    Google Scholar 

  37. Phu J, Kalloniatis M. Static automated perimetry using a new head-mounted virtual reality platform, virtual field, compared with the humphrey field Analyzer in glaucoma and optic nerve disease. Investig Ophthalmol Vis Sci. 2021;62:3364.

    Google Scholar 

  38. Mees L, Upadhyaya S, Kumar P, Kotowala S, Haran SRS, et al. Validation of a head mounted virtual reality visual field screening device. Investig Ophthalmol Vis Sci 2019;60:2482.

    Google Scholar 

  39. Mees L, Upadhyaya S, Kumar P, Kotawala S, Haran S, Rajasekar S, et al. Validation of a head-mounted virtual reality visual field screening device. J Glaucoma. 2020;29:86–91.

    Article  PubMed  Google Scholar 

  40. Alawa KA, Han E, Sayed M, Arboleda A, Durkee H, Aguilar M, et al. Low-cost, smartphone based frequency doubling technology visual field testing using virtual reality. Investig Ophthalmol Vis Sci. 2019;60:2481.

    Google Scholar 

  41. Alawa KA, Nolan RP, Han E, Arboleda A, Durkee H, Sayed MS, et al. Low-cost, smartphone-based frequency doubling technology visual field testing using a head-mounted display. Br J Ophthalmol. 2021;105:440–4.

    Article  PubMed  Google Scholar 

  42. Nida EK, Vandewalle E, Van Keer K, Vanden Abeele V, Geurts L. Clinical validation trial of Glaucoma Easy Screener (GES) as a low-cost and portable visual field screening tool. Acta Ophthalmologica [Internet]. 2019 [cited 2023 Apr 11];97. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1755-3768.2019.5226.

  43. Tubene L, McLaughlin M. Comparison of virtual field device to humphrey visual field SITA-fast in normal subjects. Investig Ophthalmol Vis Sci. 2021;62:3481.

    Google Scholar 

  44. Gregerson C, Annis T, Murri M, Shumway C, Pettey JH, Shah A. Usability of a portable virtual reality device for visual field screening in outreach settings. Investig Ophthalmol Vis Sci. 2020;61:3892.

    Google Scholar 

  45. Odayappan A, Sivakumar P, Kotawala S, Raman R, Nachiappan S, Pachiyappan A, et al. Comparison of a new head mount virtual reality perimeter (C3 Field Analyzer) with automated field analyzer in neuro-ophthalmic disorders. J Neuroophthalmol. 2022;43:232–6.

    Article  PubMed  Google Scholar 

  46. Ogura K, Sugano M, Takabatake S, Naitoh Y, Nakaoka K. VR application for visual field measurement of unilateral spatial neglect patients using eye tracking. IEEE Int Conf Healthc Inform. 2019;2019:1–2.

    Google Scholar 

  47. Soans RS, Renken RJ, John J, Bhongade A, Raj D, Saxena R, et al. Patients prefer a virtual reality approach over a similarly performing screen-based approach for continuous oculomotor-based screening of glaucomatous and neuro-ophthalmological visual field defects. Front Neurosci. 2021;15:745355.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sircar T, Mishra A, Bopardikar A, Tiwari VN. GearVision: smartphone based head mounted perimeter for detection of visual field defects. Annu Int Conf IEEE Eng Med Biol Soc. 2018;2018:5402–5.

    PubMed  Google Scholar 

  49. Kunumpol P, Lerthirunvibul N, Phienphanich P, Munthuli A, Tantisevi V, Manassakorn A, et al. GlauCUTU: virtual reality visual field test. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:7416–21.

    CAS  PubMed  Google Scholar 

  50. Kunumpol P, Lerthirunvibul N, Phienphanich P, Munthuli A, Temahivong K, Tantisevi V, et al. GlauCUTU: time until perceived virtual reality perimetry with humphrey field analyzer prediction-based artificial intelligence. IEEE Access. 2022;10:36949–62.

    Article  Google Scholar 

  51. Goldbach AH, Abou Shousha M, Duque C, Kashem R, Mohder F, Shaheen AR, et al. Visual field measurements using Heru visual field multi-platform application downloaded on two different commercially available augmented reality devices. Investig Ophthalmol Vis Sci. 2021;62:1017.

    Google Scholar 

  52. Kashem R, Goldbach AH, Elsawy A, Mohder F, Bonyadi S, Sharma M, et al. Comparison of Heru Visual field as a cloud based artificial intelligence-powered software application downloadable on commercial augmented reality headset with Humphrey Field Analyzer SITA Standard. Investig Ophthalmol Vis Sci. 2021;62:3389.

    Google Scholar 

  53. Rajpal S, Durbin PM, Nicklin O, Alexandra SB, Lopez V, et al. Evaluation of patient acceptance for visual field testing with a wearable device. Investig Ophthalmol Vis Sci 2022;63:1270–A0410.

    Google Scholar 

  54. Moore-Stoll V, Dul MW, Rahimi Nasrabadi H, Jin JZ, Alonso JM. Increment/decrement perimetry in glaucomatous observers in a virtual reality environment. Investig Ophthalmol Vis Sci. 2020;61:3882.

    Google Scholar 

  55. Sipatchin A, Wahl S, Rifai K. Eye-tracking for clinical ophthalmology with Virtual Reality (VR): a case study of the HTC Vive pro eye’s usability. Healthcare. 2021;9:180.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Freeman S, De Arrigunaga S, Kang J, Zhao Y, Roldan AM, Lin MM, et al. Participant experience using novel perimetry tests to monitor glaucoma progression. Investig Ophthalmol Vis Sci. 2022;63:1262–A0402.

    Google Scholar 

  57. Lin M, Zhao Y, Freeman S, Kang J, De Arrigunaga S, Friedman DS, et al. Comparison of portable perimetry tests with the humphrey field analyzer. Investig Ophthalmol Vis Sci. 2022;63:1278–A0418.

    Google Scholar 

  58. Hollander DA, Volpe NJ, Moster ML, Liu GT, Balcer LJ, Judy KD, et al. Use of a portable head mounted perimetry system to assess bedside visual fields. Br J Ophthalmol. 2000;84:1185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Aftab OM, Verma R, Shah VP, Shah Y, Tailor P, Zhu A, et al. Virtual reality visual field exam in community screenings during COVID-19. Investig Ophthalmol Vis Sci. 2022;63:1389–A0085.

    Google Scholar 

  60. Shetty V, Sankhe P, Haldipurkar SS, Haldipurkar T, Dhamankar R, Kashelkar P, et al. Diagnostic performance of the PalmScan VF2000 virtual reality visual field analyzer for identification and classification of glaucoma. J Ophthalmic Vis Res. 2022;17:33–41.

    PubMed  PubMed Central  Google Scholar 

  61. Tran E, Wan L, Yan W, Sun Y, Chang R. Comparison of virtual reality (PalmScan VF2000) visual fields analyzer with humphrey visual field in glaucoma patients. Investig Ophthalmol Vis Sci. 2020;61:3893.

    Google Scholar 

  62. Sokol JT, Rosen DT, Litt H, Hellman J, Farrokh-Siar L, Ksiazek S. Utilizing a commercially available virtual reality device to detect visual field defects in glaucoma and glaucoma suspect patients. Investig Ophthalmol Vis Sci. 2017;58:4743.

    Google Scholar 

  63. Patel AJ, Lee WW, Munshi H, Chang TC, Grajewski AL, Tse DT, et al. Comparison of virtual reality device vs. standard automated perimetry in the assessment of superior visual field prior to functional upper eyelid surgery. Investig Ophthalmol Vis Sci 2022;63:606–A0307.

    Google Scholar 

  64. Rady N, Johnson C, Lopez V, Mijares G, Durbin MK. Nicklin O Alexandra, et al. impact of corrective lenses on the supra-threshold visual field test with augmented reality headsets. Investig Ophthalmol Vis Sci 2022;63:722–F0450.

    Google Scholar 

  65. Ahmed Y, Pereira A, Bowden S, Shi RB, Li Y, Ahmed IIK, et al. Multicenter comparison of the toronto portable perimeter with the humphrey field analyzer: a pilot study. Ophthalmol Glaucoma. 2022;5:146–59.

    Article  PubMed  Google Scholar 

  66. Tsapakis S, Papaconstantinou D, Diagourtas A, Droutsas K, Andreanos K, Moschos MM, et al. Visual field examination method using virtual reality glasses compared with the Humphrey perimeter. Clin Ophthalmol. 2017;11:1431–43.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tsapakis S, Papaconstantinou D, Diagourtas A, Kandarakis S, Droutsas K, Andreanos K, et al. Home-based visual field test for glaucoma screening comparison with Humphrey perimeter. Clin Ophthalmol. 2018;12:2597–606.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Fink W, Cerwin J, Adams C. Virtual Opportunistic Reaction Perimetry (VORP). Investig Ophthalmol Vis Sci 2019;60:4385.

    Google Scholar 

  69. Portengen B, Naber M, Jansen D, van den Boomen C, Imhof S, Porro G. Maintaining fixation by children in a virtual reality version of pupil perimetry. Investig Ophthalmol Vis Sci. 2022;63:123–A0285.

    Google Scholar 

  70. Portengen B, Naber M, Jansen D, Boomen C van den, Imhof S, Porro G. Maintaining fixation by children in a virtual reality version of pupil perimetry. Journal of Eye Movement Research [Internet]. 2022 Sep [cited 2023 Apr 11];15. Available from: https://bop.unibe.ch/JEMR/article/view/8303.

  71. McLaughlin D, Munshi H, Savatovsky E, Vanner E, Chang TC, Grajewski AL. Visual field testing in a telehealth setting: remote perimetry using a head-mounted device in normal eyes. Investig Ophthalmol Vis Sci. 2022;63:1265–A0405.

    Google Scholar 

  72. Munshi H, Da Silva K, Savatovsky E, Bitrian E, Grajewski AL, Chang TC. Preliminary retrospective validation of a novel virtual reality visual field standard testing algorithm, as compared to standard automated perimetry. Investig Ophthalmol Vis Sci. 2022;63:1275–A0415.

    Google Scholar 

  73. Berneshawi AR, Shue A, Chang R. Feasibility of glaucoma home self testing using a virtual reality visual field test combined with home tonometry. Investig Ophthalmol Vis Sci. 2022;63:1281–A0421.

    Google Scholar 

  74. Chaudhry AF, Berneshawi AR, Liu J, Shue A, Chang D, Kim J, et al. Repeatability and correlation of a virtual reality perimeter with standard automated perimetry in glaucoma patients. Investig Ophthalmol Vis Sci. 2022;63:1279–A0419.

    Google Scholar 

  75. Groth SL, Linton E, Brown E, makadia F, Donahue S. Novel virtual-reality perimetey in normal children compared to humprey field analyzer. Investig Ophthalmol Vis Sci. 2021;62:3391.

    Google Scholar 

  76. Linton EF, Makadi FA, Donahue SP, Groth SL. Comparison of a virtual-reality headset-based perimetry device to standard Humphrey visual field in normal children. J Am Assoc Pediatr Ophthalmol Strabismus. 2021;25:e63–4.

    Article  Google Scholar 

  77. Groth SL, Linton EF, Brown EN, Makadia F, Donahue SP.Evaluation of virtual reality perimetry and standard automated perimetry in normal children.Transl Vis Sci Technol. 2023;12:6

    Article  PubMed  PubMed Central  Google Scholar 

  78. Labkovich M, Warburton A, Okome O, Cheng C, Serafini R, Hovstadius MS, et al. Virtual reality enables rapid, multi-faceted retinal function screenings. Investig Ophthalmol Vis Sci. 2022;63:713–F0441.

    Google Scholar 

  79. Chia ZK, Turner ML, Kong AW, Backus BT, Deiner M, Ou Y. Remote training and administration of a portable virtual reality-based visual field test for home testing during COVID-19. Investig Ophthalmol Vis Sci 2021;62:1766.

    Google Scholar 

  80. Chia ZK, Kong AW, Turner ML, Backus BT, Deiner M, Ou Y. Comparison of a virtual reality-based visual field test to conventional perimetry and OCT. Investig Ophthalmol Vis Sci. 2022;63:3103.

    Google Scholar 

  81. Chia ZK, Kong AW, Turner ML, Saifee M, Damato BE, Backus BT, et al. Assessment of Remote Training, At-Home Testing, and Test-Retest Variability of a Novel Test for Clustered Virtual Reality Perimetry. Ophthalmol Glaucoma. 2023. https://doi.org/10.1016/j.ogla.2023.08.006.

Download references

Author information

Authors and Affiliations

Authors

Contributions

KS conceived the review, coordinated the contributors, and designed the search strategy. KS and HA selected the studies. AV and AS resolved study selection conflicts, and with KS, HA and MG, designed the extraction methods. KS and HA contributed to data extraction, and AV and AS resolved extraction conflicts. KS and MM contributed to the first draft. All authors revised drafts of the manuscript and approved the final manuscript. The corresponding author had full access to all the data in the study and final responsibility for the decision to submit for publication.

Corresponding author

Correspondence to Kavin Selvan.

Ethics declarations

Competing interests

AS is the co-founder and CEO of RetinaLogik, Inc., a company developing a VR headset-based perimetry device.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvan, K., Mina, M., Abdelmeguid, H. et al. Virtual reality headsets for perimetry testing: a systematic review. Eye 38, 1041–1064 (2024). https://doi.org/10.1038/s41433-023-02843-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02843-y

Search

Quick links