Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Amniotic membrane transplantation: structural and biological properties, tissue preparation, application and clinical indications

Abstract

The amniotic membrane is a single epithelial layer of the placenta. It has anti-inflammatory, anti-scarring, anti-angiogenic and possibly bactericidal properties. The basement membrane of the amniotic membrane acts as a substrate to encourage healing and re-epithelialisation. It has been used in many ocular surface diseases including persistent epithelial defects (corneal or conjunctival), chemical or thermal burns, limbal stem cell deficiency, cicatrising conjunctivitis, ocular graft versus host disease, microbial keratitis, corneal perforation, bullous keratopathy, dry eye disease, corneal haze following refractive surgery and cross-linking, band keratopathy, ocular surface neoplasia, pterygium surgery, and ligneous conjunctivitis. This review provides an up-to-date overview of amniotic membrane transplantation including the structural and biological properties, preparation and application, clinical indications, and commercially available products.

摘要

羊膜是胎盘的一层单一上皮组织。它具有抗炎、抗瘢痕、抗血管生成和抗菌特性。羊膜的基底膜作为基质, 具有促进愈合和重新上皮化的作用。它用于许多眼表疾病, 包括持续性上皮缺陷(角膜或结膜) 、化学或热烧伤、角膜缘干细胞缺乏、瘢痕性结膜炎、眼部移植物抗宿主疾病、微生物性角膜炎、角膜穿孔、大泡性角膜病变、干眼综合征、屈光矫视和交联术后的角膜混浊、带状角膜病变、眼表肿瘤、翼状胬肉手术和木样结膜炎。本综述提供了羊膜移植的最新概述, 包括结构和生物特性、制备和应用、临床适应症和商用产品。

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stern M. The grafting of preserved amniotic membrane to burned and ulcerated surfaces, substituing skin grafts: a preliminary report. J Am Med Assoc. 1913;60:973–4.

    Google Scholar 

  2. Rötth de A. Plastic repair of conjunctival defects with fetal membranes. Arch Ophthalmol. 1940;23:522–5.

    Google Scholar 

  3. Battle J, Perdomo F. Placental membranes as a conjunctival substitute. Ophthalmology. 1993;100:107.

    Google Scholar 

  4. Kim JC, Tseng SC. Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea. 1995;14:473–84.

    CAS  PubMed  Google Scholar 

  5. Walkden A. Amniotic membrane transplantation in ophthalmology: an updated perspective. Clin Ophthalmol Auckl NZ. 2020;14:2057–72.

    Google Scholar 

  6. Bourne GL. The microscopic anatomy of the human amnion and chorion. Am J Obstet Gynecol. 1960;79:1070–3.

    CAS  PubMed  Google Scholar 

  7. Mamede AC, Carvalho MJ, Abrantes AM, Laranjo M, Maia CJ, Botelho MF. Amniotic membrane: from structure and functions to clinical applications. Cell Tissue Res. 2012;349:447–58.

    CAS  PubMed  Google Scholar 

  8. Benedetti WL, Sala MA, Alvarez H. Histochemical demonstration of enzymes in the umbilical cord and membranes of human term pregnancy. Eur J Obstet Gynecol Reprod Biol. 1973;3:185–9.

    CAS  Google Scholar 

  9. Dua HS, Gomes JAP, King AJ, Maharajan VS. The amniotic membrane in ophthalmology. Surv Ophthalmol. 2004;49:51–77.

    PubMed  Google Scholar 

  10. Gomes JAP, Romano A, Santos MS, Dua HS. Amniotic membrane use in ophthalmology. Curr Opin Ophthalmol. 2005;16:233–40.

    PubMed  Google Scholar 

  11. Meller D, Pires RTF, Tseng SCG. Ex vivo preservation and expansion of human limbal epithelial stem cells on amniotic membrane cultures. Br J Ophthalmol. 2002;86:463–71.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Woo HM, Kim MS, Kweon OK, Kim DY, Nam TC, Kim JH. Effects of amniotic membrane on epithelial wound healing and stromal remodelling after excimer laser keratectomy in rabbit cornea. Br J Ophthalmol. 2001;85:345–9. https://doi.org/10.1136/bjo.85.3.345.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Boudreau N, Werb Z, Bissell MJ. Suppression of apoptosis by basement membrane requires three-dimensional tissue organization and withdrawal from the cell cycle. Proc Natl Acad Sci USA. 1996;93:3509–13.

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  14. Grzywocz Z, Pius-Sadowska E, Klos P, Gryzik M, Wasilewska D, Aleksandrowicz B, et al. Growth factors and their receptors derived from human amniotic cells in vitro. Folia Histochem Cytobiol. 2014;52:163–70.

    PubMed  Google Scholar 

  15. Koizumi NJ, Inatomi TJ, Sotozono CJ, Fullwood NJ, Quantock AJ, Kinoshita S. Growth factor mRNA and protein in preserved human amniotic membrane. Curr Eye Res. 2000;20:173–7.

    CAS  PubMed  Google Scholar 

  16. Thorel D, Ingen-Housz-Oro S, Royer G, Delcampe A, Bellon N, Bodemer C, et al. Management of ocular involvement in the acute phase of Stevens-Johnson syndrome and toxic epidermal necrolysis: french national audit of practices, literature review, and consensus agreement. Orphanet J Rare Dis. 2020;15:259.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Solomon A, Rosenblatt M, Monroy D, Ji Z, Pflugfelder SC, Tseng SC. Suppression of interleukin 1alpha and interleukin 1beta in human limbal epithelial cells cultured on the amniotic membrane stromal matrix. Br J Ophthalmol. 2001;85:444–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Park WC, Tseng SC. Modulation of acute inflammation and keratocyte death by suturing, blood, and amniotic membrane in PRK. Invest Ophthalmol Vis Sci. 2000;41:2906–14.

    CAS  PubMed  Google Scholar 

  19. Tseng SC, Li DQ, Ma X. Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J Cell Physiol. 1999;179:325–35.

    CAS  PubMed  Google Scholar 

  20. Kim JS, Kim JC, Na BK, Jeong JM, Song CY. Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp Eye Res. 2000;70:329–37.

    CAS  PubMed  Google Scholar 

  21. Hao Y, Ma DH, Hwang DG, Kim WS, Zhang F. Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea. 2000;19:348–52.

    CAS  PubMed  Google Scholar 

  22. Zare-Bidaki M, Sadrinia S, Erfani S, Afkar E, Ghanbarzade N. Antimicrobial properties of amniotic and chorionic membranes: a comparative study of two human fetal sacs. J Reprod Infertil. 2017;18:218–24.

    PubMed Central  PubMed  Google Scholar 

  23. Tabatabaei SA, Soleimani M, Behrouz MJ, Torkashvand A, Anvari P, Yaseri M. A randomized clinical trial to evaluate the usefulness of amniotic membrane transplantation in bacterial keratitis healing. Ocul Surf. 2017;15:218–26.

    PubMed  Google Scholar 

  24. King AE, Paltoo A, Kelly RW, Sallenave J-M, Bocking AD, Challis JRG. Expression of natural antimicrobials by human placenta and fetal membranes. Placenta. 2007;28:161–9.

    CAS  PubMed  Google Scholar 

  25. Sangwan VS, Basu S. Antimicrobial properties of amniotic membrane. Br J Ophthalmol. 2011;95:1–2.

    PubMed  Google Scholar 

  26. Bauer D, Wasmuth S, Hennig M, Baehler H, Steuhl K-P, Heiligenhaus A. Amniotic membrane transplantation induces apoptosis in T lymphocytes in murine corneas with experimental herpetic stromal keratitis. Invest Ophthalmol Vis Sci. 2009;50:3188–98.

    PubMed  Google Scholar 

  27. Heiligenhaus A, Li HF, Yang Y, Wasmuth S, Steuhl KP, Bauer D. Transplantation of amniotic membrane in murine herpes stromal keratitis modulates matrix metalloproteinases in the cornea. Invest Ophthalmol Vis Sci. 2005;46:4079–85.

    PubMed  Google Scholar 

  28. Kantarci FA, Faraji AR, Ozkul A, Akata F. Evaluation of the effects of acyclovir and/or human amniotic membrane on herpes virus culture and quantitative virus inactivity by real-time polymerase chain reaction. Int J Ophthalmol. 2014;7:626–31.

    PubMed Central  PubMed  Google Scholar 

  29. Jirsova K, Jones GLA. Amniotic membrane in ophthalmology: properties, preparation, storage and indications for grafting-a review. Cell Tissue Bank. 2017;18:193–204.

    CAS  PubMed  Google Scholar 

  30. Paolin A, Trojan D, Leonardi A, Mellone S, Volpe A, Orlandi A, et al. Cytokine expression and ultrastructural alterations in fresh-frozen, freeze-dried and γ-irradiated human amniotic membranes. Cell Tissue Bank. 2016;17:399–406.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Malhotra C, Jain AK. Human amniotic membrane transplantation: different modalities of its use in ophthalmology. World J Transpl. 2014;4:111–21.

    Google Scholar 

  32. Allen CL, Clare G, Stewart EA, Branch MJ, McIntosh OD, Dadhwal M, et al. Augmented dried versus cryopreserved amniotic membrane as an ocular surface dressing. PloS ONE. 2013;8:e78441.

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  33. Nakamura T, Yoshitani M, Rigby H, Fullwood NJ, Ito W, Inatomi T, et al. Sterilized, freeze-dried amniotic membrane: a useful substrate for ocular surface reconstruction. Invest Ophthalmol Vis Sci. 2004;45:93–9.

    PubMed  Google Scholar 

  34. Rodríguez-Ares MT, López-Valladares MJ, Touriño R, Vieites B, Gude F, Silva MT, et al. Effects of lyophilization on human amniotic membrane. Acta Ophthalmol (Copenh). 2009;87:396–403.

    Google Scholar 

  35. Ab Hamid SS, Zahari NK, Yusof N, Hassan A. Scanning electron microscopic assessment on surface morphology of preserved human amniotic membrane after gamma sterilisation. Cell Tissue Bank. 2014;15:15–24.

    PubMed  Google Scholar 

  36. Hopkinson A, Britchford ER, Sidney LE. Preparation of dried amniotic membrane for corneal repair. Methods Mol Biol Clifton NJ. 2020;2145:143–57.

    Google Scholar 

  37. Marangon FB, Alfonso EC, Miller D, Remonda NM, Muallem MS, Tseng SCG. Incidence of microbial infection after amniotic membrane transplantation. Cornea. 2004;23:264–9.

    PubMed  Google Scholar 

  38. Fernandes M, Sridhar MS, Sangwan VS, Rao GN. Amniotic membrane transplantation for ocular surface reconstruction. Cornea. 2005;24:643–53.

    PubMed  Google Scholar 

  39. Meller D, Pauklin M, Thomasen H, Westekemper H, Steuhl K-P. Amniotic membrane transplantation in the human eye. Dtsch Ärztebl Int. 2011;108:243–8.

    PubMed Central  PubMed  Google Scholar 

  40. Utheim TP, Aass Utheim Ø, Salvanos P, Jackson CJ, Schrader S, Geerling G, et al. Concise review: altered versus unaltered amniotic membrane as a substrate for limbal epithelial cells. Stem Cells Transl Med. 2018;7:415–27.

    PubMed Central  PubMed  Google Scholar 

  41. Koizumi N, Rigby H, Fullwood NJ, Kawasaki S, Tanioka H, Koizumi K, et al. Comparison of intact and denuded amniotic membrane as a substrate for cell-suspension culture of human limbal epithelial cells. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2007;245:123–34.

    Google Scholar 

  42. Mishan MA, Yaseri M, Baradaran-Rafii A, Kanavi MR. Systematic review and meta-analysis investigating autograft versus allograft cultivated limbal epithelial transplantation in limbal stem cell deficiency. Int Ophthalmol. 2019;39:2685–96.

    PubMed  Google Scholar 

  43. Sangwan VS, Basu S, MacNeil S, Balasubramanian D. Simple limbal epithelial transplantation (SLET): a novel surgical technique for the treatment of unilateral limbal stem cell deficiency. Br J Ophthalmol. 2012;96:931–4.

    PubMed  Google Scholar 

  44. Shanbhag SS, Patel CN, Goyal R, Donthineni PR, Singh V, Basu S. Simple limbal epithelial transplantation (SLET): review of indications, surgical technique, mechanism, outcomes, limitations, and impact. Indian J Ophthalmol. 2019;67:1265–77.

    PubMed Central  PubMed  Google Scholar 

  45. Shanbhag SS, Nikpoor N, Rao Donthineni P, Singh V, Chodosh J, Basu S. Autologous limbal stem cell transplantation: a systematic review of clinical outcomes with different surgical techniques. Br J Ophthalmol. 2020;104:247–53.

    PubMed  Google Scholar 

  46. Vazirani J, Ali MH, Sharma N, Gupta N, Mittal V, Atallah M, et al. Autologous simple limbal epithelial transplantation for unilateral limbal stem cell deficiency: multicentre results. Br J Ophthalmol. 2016;100:1416–20.

    PubMed  Google Scholar 

  47. Malyugin BE, Gerasimov MY, Borzenok SA. Glueless simple limbal epithelial transplantation: the report of the first 2 cases. Cornea. 2020;39:1588–91.

    PubMed  Google Scholar 

  48. Dua HS, Miri A, Elalfy MS, Lencova A, Said DG. Amnion-assisted conjunctival epithelial redirection in limbal stem cell grafting. Br J Ophthalmol. 2017;101:913–9.

    PubMed  Google Scholar 

  49. Uçakhan OO, Köklü G, Firat E. Nonpreserved human amniotic membrane transplantation in acute and chronic chemical eye injuries. Cornea. 2002;21:169–72.

    PubMed  Google Scholar 

  50. Meller D, Pires RT, Mack RJ, Figueiredo F, Heiligenhaus A, Park WC, et al. Amniotic membrane transplantation for acute chemical or thermal burns. Ophthalmology. 2000;107:980–9.

    CAS  PubMed  Google Scholar 

  51. Tandon R, Gupta N, Kalaivani M, Sharma N, Titiyal JS, Vajpayee RB. Amniotic membrane transplantation as an adjunct to medical therapy in acute ocular burns. Br J Ophthalmol. 2011;95:199–204.

    PubMed  Google Scholar 

  52. Clare G, Suleman H, Bunce C, Dua H. Amniotic membrane transplantation for acute ocular burns. Cochrane Database Syst Rev. 2012;2012:CD009379.

  53. Eslani M, Baradaran-Rafii A, Cheung AY, Kurji KH, Hasani H, Djalilian AR, et al. Amniotic membrane transplantation in acute severe ocular chemical injury: a randomized clinical trial. Am J Ophthalmol. 2019;199:209–15.

    CAS  PubMed  Google Scholar 

  54. Dua HS, King AJ, Joseph A. A new classification of ocular surface burns. Br J Ophthalmol. 2001;85:1379–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Kobayashi A, Shirao Y, Yoshita T, Yagami K, Segawa Y, Kawasaki K, et al. Temporary amniotic membrane patching for acute chemical burns. Eye. 2003;17:149–58.

    CAS  PubMed  Google Scholar 

  56. Creamer D, Walsh SA, Dziewulski P, Exton LS, Lee HY, Dart JKG, et al. U.K. guidelines for the management of Stevens-Johnson syndrome/toxic epidermal necrolysis in adults 2016. Br J Dermatol. 2016;174:1194–227.

    CAS  PubMed  Google Scholar 

  57. Sharma N, Thenarasun SA, Kaur M, Pushker N, Khanna N, Agarwal T, et al. Adjuvant role of amniotic membrane transplantation in acute ocular Stevens-Johnson Syndrome: A Randomized Control Trial. Ophthalmology. 2016;123:484–91.

    PubMed  Google Scholar 

  58. Shanbhag SS, Hall L, Chodosh J, Saeed HN. Long-term outcomes of amniotic membrane treatment in acute Stevens-Johnson syndrome/toxic epidermal necrolysis. Ocul Surf. 2020;18:517–22.

    PubMed Central  PubMed  Google Scholar 

  59. Mohammadpour M, Maleki S, Hashemi H, Beheshtnejad AH. Recurrent corneal perforation due to chronic graft versus host disease; a clinicopathologic report. J Ophthalmic Vis Res. 2016;11:108–11.

    PubMed Central  PubMed  Google Scholar 

  60. Yeh P-T, Hou Y-C, Lin W-C, Wang I-J, Hu F-R. Recurrent corneal perforation and acute calcareous corneal degeneration in chronic graft-versus-host disease. J Formos Med Assoc Taiwan Yi Zhi. 2006;105:334–9.

    PubMed  Google Scholar 

  61. Peris-Martínez C, Menezo JL, Díaz-Llopis M, Aviñó-Martínez JA, Navea-Tejerina A, Risueño-Reguillo P. Multilayer amniotic membrane transplantation in severe ocular graft versus host disease. Eur J Ophthalmol. 2001;11:183–6.

    PubMed  Google Scholar 

  62. Latifi G, Asadi Khameneh E. Herpes zoster ophthalmicus and limbal ischemia in a patient with history of ocular graft-versus-host disease. J Curr Ophthalmol. 2020;32:290–2.

    PubMed Central  PubMed  Google Scholar 

  63. McDonald MB, Sheha H, Tighe S, Janik SB, Bowden FW, Chokshi AR, et al. Treatment outcomes in the dry eye amniotic membrane (DREAM) study. Clin Ophthalmol Auckl NZ. 2018;12:677–81.

    CAS  Google Scholar 

  64. Cheng AMS, Zhao D, Chen R, Yin HY, Tighe S, Sheha H, et al. Accelerated restoration of ocular surface health in dry eye disease by self-retained cryopreserved amniotic membrane. Ocul Surf. 2016;14:56–63.

    CAS  PubMed  Google Scholar 

  65. Jones L, Downie LE, Korb D, Benitez-Del-Castillo JM, Dana R, Deng SX, et al. TFOS DEWS II management and therapy report. Ocul Surf. 2017;15:575–628.

    PubMed  Google Scholar 

  66. Huang Y, Sheha H, Tseng SCG. Self-retained Amniotic Membrane for Recurrent Corneal Erosion. J Clin Exp Ophthalmol. 2013;4:272.

  67. Watson SL, Leung V. Interventions for recurrent corneal erosions. Cochrane Database Syst Rev. 2018;7:CD001861.

    PubMed  Google Scholar 

  68. Schuerch K, Baeriswyl A, Frueh BE, Tappeiner C. Efficacy of amniotic membrane transplantation for the treatment of corneal ulcers. Cornea. 2020;39:479–83.

    PubMed  Google Scholar 

  69. Liu J, Li L, Li X. Effectiveness of cryopreserved amniotic membrane transplantation in corneal ulceration: a meta-analysis. Cornea. 2019;38:454–62.

    PubMed  Google Scholar 

  70. Yin HY, Cheng AMS, Tighe S, Kurochkin P, Nord J, Dhanireddy S, et al. Self-retained cryopreserved amniotic membrane for treating severe corneal ulcers: a comparative, retrospective control study. Sci Rep. 2020;10:17008.

    CAS  PubMed Central  ADS  PubMed  Google Scholar 

  71. Singhal D, Nagpal R, Maharana PK, Sinha R, Agarwal T, Sharma N, et al. Surgical alternatives to keratoplasty in microbial keratitis. Surv Ophthalmol. 2021;66:290–307.

    PubMed  Google Scholar 

  72. Rodríguez-Ares MT, Touriño R, López-Valladares MJ, Gude F. Multilayer amniotic membrane transplantation in the treatment of corneal perforations. Cornea. 2004;23:577–83.

    PubMed  Google Scholar 

  73. Hick S, Demers PE, Brunette I, La C, Mabon M, Duchesne B. Amniotic membrane transplantation and fibrin glue in the management of corneal ulcers and perforations: a review of 33 cases. Cornea. 2005;24:369–77.

    PubMed  Google Scholar 

  74. Fan J, Wang M, Zhong F. Improvement of amniotic membrane method for the treatment of corneal perforation. BioMed Res Int. 2016;2016:1693815.

    PubMed Central  PubMed  Google Scholar 

  75. Krysik K, Dobrowolski D, Wylegala E, Lyssek-Boron A. Amniotic membrane as a main component in treatments supporting healing and patch grafts in corneal melting and perforations. J Ophthalmol. 2020;2020:4238919.

    PubMed Central  PubMed  Google Scholar 

  76. Ke L, Shen D, Wang H, Qiao C, Zeng Q. Lamellar keratoplasty combined with amniotic membrane transplantation for the treatment of corneal perforations: a clinical and in vivo confocal microscopy study. BioMed Res Int. 2020;2020:7403842.

    PubMed Central  PubMed  Google Scholar 

  77. Fuchsluger T, Tuerkeli E, Westekemper H, Esser J, Steuhl K-P, Meller D. Rate of epithelialisation and re-operations in corneal ulcers treated with amniotic membrane transplantation combined with botulinum toxin-induced ptosis. Graefes Arch Clin Exp Ophthalmol Albrecht Von Graefes Arch Klin Exp Ophthalmol. 2007;245:955–64.

    Google Scholar 

  78. Khokhar S, Natung T, Sony P, Sharma N, Agarwal N, Vajpayee RB. Amniotic membrane transplantation in refractory neurotrophic corneal ulcers: a randomized, controlled clinical trial. Cornea. 2005;24:654–60.

    PubMed  Google Scholar 

  79. Paris FdosS, Gonçalves ED, Campos MSdeQ, Sato EH, Dua HS, Gomes JÁP. Amniotic membrane transplantation versus anterior stromal puncture in bullous keratopathy: a comparative study. Br J Ophthalmol. 2013;97:980–4.

    PubMed  Google Scholar 

  80. Gregory ME, Spiteri-Cornish K, Hegarty B, Mantry S, Ramaesh K. Combined amniotic membrane transplant and anterior stromal puncture in painful bullous keratopathy: clinical outcome and confocal microscopy. Can J Ophthalmol J Can Ophtalmol. 2011;46:169–74.

    Google Scholar 

  81. Chawla B, Sharma N, Tandon R, Kalaivani M, Titiyal JS, Vajpayee RB. Comparative evaluation of phototherapeutic keratectomy and amniotic membrane transplantation for management of symptomatic chronic bullous keratopathy. Cornea. 2010;29:976–9.

    PubMed  Google Scholar 

  82. Vyas S, Rathi V. Combined phototherapeutic keratectomy and amniotic membrane grafts for symptomatic bullous keratopathy. Cornea. 2009;28:1028–31.

    PubMed  Google Scholar 

  83. Wang MX, Gray TB, Park WC, Prabhasawat P, Culbertson W, Forster R, et al. Reduction in corneal haze and apoptosis by amniotic membrane matrix in excimer laser photoablation in rabbits. J Cataract Refract Surg. 2001;27:310–9.

    CAS  PubMed  Google Scholar 

  84. Vlasov A, Sia RK, Ryan DS, Mines MJ, Stutzman RD, Rivers BA, et al. Sutureless cryopreserved amniotic membrane graft and wound healing after photorefractive keratectomy. J Cataract Refract Surg. 2016;42:435–43.

    PubMed  Google Scholar 

  85. Cox AR, Sia RK, Purt B, Ryan DS, Beydoun H, Colyer MH, et al. Assessment of corneal haze after PRK and the effect of sutureless amniotic membrane graft by corneal densitometry. J Refract Surg Thorofare NJ 1995. 2020;36:293–9.

    Google Scholar 

  86. Lee HK, Kim JK, Kim EK, Kim GO, Lee IS. Phototherapeutic keratectomy with amniotic membrane for severe subepithelial fibrosis following excimer laser refractive surgery. J Cataract Refract Surg. 2003;29:1430–5.

    PubMed  Google Scholar 

  87. Ting DSJ, Srinivasan S, Danjoux J-P. Epithelial ingrowth following laser in situ keratomileusis (LASIK): prevalence, risk factors, management and visual outcomes. BMJ Open Ophthalmol. 2018;3:e000133.

    PubMed Central  PubMed  Google Scholar 

  88. Anderson DF, Prabhasawat P, Alfonso E, Tseng SC. Amniotic membrane transplantation after the primary surgical management of band keratopathy. Cornea. 2001;20:354–61.

    CAS  PubMed  Google Scholar 

  89. Im S-K, Lee K-H, Yoon K-C. Combined ethylenediaminetetraacetic acid chelation, phototherapeutic keratectomy and amniotic membrane transplantation for treatment of band keratopathy. Korean J Ophthalmol KJO. 2010;24:73–7.

    CAS  PubMed  Google Scholar 

  90. Espana EM, Prabhasawat P, Grueterich M, Solomon A, Tseng SCG. Amniotic membrane transplantation for reconstruction after excision of large ocular surface neoplasias. Br J Ophthalmol. 2002;86:640–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Agraval U, Rundle P, Rennie IG, Salvi S. Fresh frozen amniotic membrane for conjunctival reconstruction after excision of neoplastic and presumed neoplastic conjunctival lesions. Eye Lond Engl. 2017;31:884–9.

    CAS  Google Scholar 

  92. Lee JH, Kim YH, Kim MS, Kim EC. The effect of surgical wide excision and amniotic membrane transplantation with adjuvant topical mitomycin C treatment in recurrent conjunctival–corneal intraepithelial neoplasia. Semin Ophthalmol. 2014;29:192–5.

    PubMed  Google Scholar 

  93. Finger PT, Jain P, Mukkamala SK. Super-thick amniotic membrane graft for ocular surface reconstruction. Am J Ophthalmol. 2019;198:45–53.

    PubMed  Google Scholar 

  94. Borrelli M, Geerling G, Spaniol K, Witt J. Eye socket regeneration and reconstruction. Curr Eye Res. 2020;45:253–64.

    CAS  PubMed  Google Scholar 

  95. Clearfield E, Muthappan V, Wang X, Kuo IC. Conjunctival autograft for pterygium. Cochrane Database Syst Rev. 2016;2:CD011349.

    PubMed  Google Scholar 

  96. Shusko A, Schechter BA, Hovanesian JA. Pterygium surgery utilizing limbal conjunctival autograft and subconjunctival amniotic membrane graft in high-risk populations. Clin Ophthalmol Auckl NZ. 2020;14:2087–90.

    Google Scholar 

  97. Rodríguez-Ares MT, Abdulkader I, Blanco A, Touriño-Peralba R, Ruiz-Ponte C, Vega A, et al. Ligneous conjunctivitis: a clinicopathological, immunohistochemical, and genetic study including the treatment of two sisters with multiorgan involvement. Virchows Arch Int J Pathol. 2007;451:815–21.

    Google Scholar 

  98. Barabino S, Rolando M. Amniotic membrane transplantation in a case of ligneous conjunctivitis. Am J Ophthalmol. 2004;137:752–3.

    PubMed  Google Scholar 

  99. Tok OY, Kocaoglu FA, Tok L, Burcu A, Ornek F. Treatment of ligneous conjunctivitis with amniotic membrane transplantation and topical cyclosporine. Indian J Ophthalmol. 2012;60:563–6.

    PubMed Central  PubMed  Google Scholar 

  100. Jackson CJ, Myklebust Ernø IT, Ringstad H, Tønseth KA, Dartt DA, Utheim TP. Simple limbal epithelial transplantation: current status and future perspectives. Stem Cells Transl Med. 2020;9:316–27.

    PubMed  Google Scholar 

  101. Iyer G, Srinivasan B, Agarwal S, Tarigopula A. Outcome of allo simple limbal epithelial transplantation (alloSLET) in the early stage of ocular chemical injury. Br J Ophthalmol. 2017;101:828–33.

    PubMed  Google Scholar 

  102. Basu S, Mohan S, Bhalekar S, Singh V, Sangwan V. Simple limbal epithelial transplantation (SLET) in failed cultivated limbal epithelial transplantation (CLET) for unilateral chronic ocular burns. Br J Ophthalmol. 2018;102:1640–5.

    PubMed  Google Scholar 

  103. Amescua G, Atallah M, Nikpoor N, Galor A, Perez VL. Modified simple limbal epithelial transplantation using cryopreserved amniotic membrane for unilateral limbal stem cell deficiency. Am J Ophthalmol. 2014;158:469–475.e2.

    CAS  PubMed  Google Scholar 

  104. Agarwal S, Srinivasan B, Gupta R, Iyer G. Allogenic simple limbal epithelial transplantation versus amniotic membrane grafting in the early management of severe-grade ocular chemical injuries-a retrospective comparative study. Am J Ophthalmol. 2020;217:297–304.

    PubMed  Google Scholar 

  105. Prabhasawat P, Ekpo P, Uiprasertkul M, Chotikavanich S, Tesavibul N, Pornpanich K, et al. Long-term result of autologous cultivated oral mucosal epithelial transplantation for severe ocular surface disease. Cell Tissue Bank. 2016;17:491–503.

    CAS  PubMed  Google Scholar 

  106. Kara N, Dogan L. Simple Oral Mucosal Epithelial Transplantation in a Patient With Bilateral Limbal Stem Cell Deficiency. Eye Contact Lens. 2021;47:65–7.

    PubMed  Google Scholar 

  107. Deng SX, Kruse F, Gomes JAP, Chan CC, Daya S, Dana R, et al. Global consensus on the management of limbal stem cell deficiency. Cornea. 2020;39:1291–302.

    PubMed  Google Scholar 

  108. Caporossi T, Pacini B, Bacherini D, Barca F, Faraldi F, Rizzo S. Human amniotic membrane plug to promote failed macular hole closure. Sci Rep. 2020;10:18264.

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Caporossi T, Tartaro R, De Angelis L, Pacini B, Rizzo S. A human amniotic membrane plug to repair retinal detachment associated with large macular tear. Acta Ophthalmol (Copenh). 2019;97:821–3.

    CAS  Google Scholar 

  110. Kassem RR, El-Mofty RMA-M. Amniotic membrane transplantation in strabismus surgery. Curr Eye Res. 2019;44:451–64.

    PubMed  Google Scholar 

  111. Tugcu B, Helvacioglu F, Yuzbasioglu E, Gurez C, Yigit U. Amniotic membrane in the management of strabismus reoperations. Jpn J Ophthalmol. 2013;57:239–44.

    CAS  PubMed  Google Scholar 

  112. Shen T-Y, Hu W-N, Cai W-T, Jin H-Z, Yu D-H, Sun J-H, et al. Effectiveness and safety of trabeculectomy along with amniotic membrane transplantation on glaucoma: a systematic review. J Ophthalmol. 2020;2020:3949735.

  113. Sheha H, Kheirkhah A, Taha H. Amniotic membrane transplantation in trabeculectomy with mitomycin C for refractory glaucoma. J Glaucoma. 2008;17:303–7.

    PubMed  Google Scholar 

  114. Rauscher FM, Barton K, Budenz DL, Feuer WJ, Tseng SCG. Long-term outcomes of amniotic membrane transplantation for repair of leaking glaucoma filtering blebs. Am J Ophthalmol. 2007;143:1052–4.

    PubMed  Google Scholar 

  115. Thatte S, Jain J. Fornix reconstruction with amniotic membrane transplantation: a cosmetic remedy for blind patients. J Ophthalmic Vis Res. 2016;11:193–7.

    PubMed Central  PubMed  Google Scholar 

  116. Bajaj MS, Pushker N, Singh KK, Chandra M, Ghose S. Evaluation of amniotic membrane grafting in the reconstruction of contracted socket. Ophthal Plast Reconstr Surg. 2006;22:116–20.

    PubMed  Google Scholar 

  117. Slentz DH, Nelson CC. Novel use of cryopreserved ultra-thick human amniotic membrane for management of anophthalmic socket contracture. Ophthal Plast Reconstr Surg. 2019;35:193–6.

    PubMed  Google Scholar 

  118. Kheirkhah A, Ghaffari R, Kaghazkanani R, Hashemi H, Behrouz MJ, Raju VK. A combined approach of amniotic membrane and oral mucosa transplantation for fornix reconstruction in severe symblepharon. Cornea. 2013;32:155–60.

    PubMed  Google Scholar 

  119. Oliphant H, Rajak SN. Dried amniotic membrane in fornix reconstruction. Clin Exp Ophthalmol. 2019;47:1090–1.

    PubMed  Google Scholar 

  120. Delbarre M, Boucenna W, Froussart-Maille F. Sutureless lyophilized amniotic membrane grafting for corneal epithelial defects. Eye Contact Lens. 2022;48:430–432.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Manuscript drafting: FWBS, CM. Critical revision: FWBS, JH, JLADB, SH, CM. Final approval: FWBS, JH, JLADB, SH, CM.

Corresponding author

Correspondence to Colm McAlinden.

Ethics declarations

Competing interests

No author has any financial interest in any product mentioned in this manuscript. Dr McAlinden has submitted an ICMJE form for financial interests outside the submitted paper.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanders, F.W.B., Huang, J., Alió del Barrio, J.L. et al. Amniotic membrane transplantation: structural and biological properties, tissue preparation, application and clinical indications. Eye 38, 668–679 (2024). https://doi.org/10.1038/s41433-023-02777-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02777-5

Search

Quick links