Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Myopia prevention and control in children: a systematic review and network meta-analysis

Abstract

Objectives

To analyse and compare the efficacy of different interventions for myopia prevention and control in children.

Methods

We searched CNKI, VIP, Wan-Fang, CBM, Chinese Clinical Registry, PubMed, The Cochrane Library, Web of Science, Embase and ClinicalTrials.gov from inception to July 2022. We selected randomized controlled trials (RCTs) that included interventions to slow myopia progression in children. The main outcomes included mean annual change in axial length (AL) (millimetres/year) and in refraction (R) (dioptres/year).

Results

A total of 80 RCTs (27103 eyes) were included. In comparison with control, orthokeratology (AL, −0.36 [−0.53, −0.20], P < 0.05; R, 0.56 [0.34, 0.77], P < 0.05), 1%Atropine (AL, −0.39 [−0.65, −0.13], P < 0.05; R, 0.54 [0.31, 0.77], P < 0.05), 0.01%Atropine + orthokeratology (AL, −0.47 [−0.80, −0.14], P < 0.05; R, 0.81 [0.43, 1.20], P < 0.05) could significantly slow the progression of myopia; in addition, progressive multi-focal spectacle lenses (PMSL) (0.42, [0.06, 0.79], P < 0.05), bifocal soft contact lenses (0.40, [0.03, 0.77], P < 0.05), 0.5%Atropine (0.67 [0.25, 1.10], P < 0.05), 0.1%Atropine (0.42 [0.15, 0.71], P < 0.05), 0.05%Atropine (0.57 [0.28, 0.86], P < 0.05), 0.01%Atropine (0.33 [0.15, 0.52], P < 0.05), 1%Atropine + bifocal spectacle lenses (BSL) (1.30 [0.54, 2.00], P < 0.05), 1%Atropine + PMSL (0.66 [0.23, 1.10], P < 0.05), 0.01%Atropine + single vision spectacle lenses (SVSL) (0.70 [0.23, 1.10], P < 0.05), 0.01%Atropine + orthokeratology (0.81 [0.43, 1.20], P < 0.05), BSL + Massage (0.85 [0.22, 1.50], P < 0.05), SVSL + Red light (0.59 [0.06, 0.79], P < 0.05) showed significant slowing effect on the increase in R.

Conclusions

This network meta-analysis suggests that the combined measures were most effective in AL and R, followed by Atropine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Literature screening flowchart.
Fig. 2: Network meta-analysis of eligible comparisons.
Fig. 3: Forest plots of axial length and refraction comparing control.
Fig. 4: Cumulative probability ranking results for axial length and refraction.
Fig. 5: Cluster analysis results of co-interventions for axial length and refraction.

Similar content being viewed by others

Data availability

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  1. Holden BA, Fricke TR, Wilson DA, Jong M, Naidoo KS, Sankaridurg P, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;123:1036–42.

    Article  PubMed  Google Scholar 

  2. Vongphanit J, Mitchell P, Wang JJ. Prevalence and progression of myopic retinopathy in an older population. Ophthalmology. 2002;109:704–11.

    Article  PubMed  Google Scholar 

  3. Eye Disease Case-Control Study Group. Risk factors for idiopathic rhegmatogenous retinal detachment. The Eye Disease Case-Control Study Group. Am J Epidemiol. 1993;137:749–57.

  4. Mitchell P, Hourihan F, Sandbach J, Wang JJ. The relationship between glaucoma and myopia: the Blue Mountains Eye Study. Ophthalmology. 1999;106:2010–5.

    Article  CAS  PubMed  Google Scholar 

  5. Katz J, Schein OD, Levy B, Cruiscullo T, Saw SM, Rajan U, et al. A randomized trial of rigid gas permeable contact lenses to reduce progression of children’s myopia. Am J Ophthalmol. 2003;136:82–90.

    Article  PubMed  Google Scholar 

  6. Ma Y, Qu X, Zhu X, Xu X, Zhu J, Sankaridurg P, et al. Age-specific prevalence of visual impairment and refractive error in children aged 3-10 years in Shanghai, China. Invest Ophthalmol Vis Sci. 2016;57:6188–96.

    Article  PubMed  Google Scholar 

  7. Lin LL, Shih YF, Hsiao CK, Chen CJ. Prevalence of myopia in Taiwanese schoolchildren: 1983 to 2000. Ann Acad Med Singap. 2004;33:27–33.

    Article  CAS  PubMed  Google Scholar 

  8. Wu PC, Huang HM, Yu HJ, Fang PC, Chen CT. Epidemiology of myopia. Asia Pac J Ophthalmol (Phila). 2016;5:386–93.

    Article  PubMed  Google Scholar 

  9. Saw SM, Tong L, Chua WH, Chia KS, Koh D, Tan DT, et al. Incidence and progression of myopia in Singaporean school children. Invest Ophthalmol Vis Sci. 2005;46:51–7.

    Article  PubMed  Google Scholar 

  10. Baird PN, Saw SM, Lanca C, Guggenheim JA, Smith Iii EL, Zhou X, et al. Myopia. Nat Rev Dis Primers. 2020;6:99.

    Article  PubMed  Google Scholar 

  11. Gwiazda J, Hyman L, Hussein M, Everett D, Norton TT, Kurtz D, et al. A randomized clinical trial of progressive addition lenses versus single vision lenses on the progression of myopia in children. Invest Ophthalmol Vis Sci. 2003;44:1492–1500.

    Article  PubMed  Google Scholar 

  12. Cheng D, Schmid KL, Woo GC, Drobe B. Randomized trial of effect of bifocal and prismatic bifocal spectacles on myopic progression: two-year results. Arch Ophthalmol. 2010;128:12–9.

    Article  PubMed  Google Scholar 

  13. Hasebe S, Ohtsuki H, Nonaka T, Nakatsuka C, Miyata M, Hamasaki I, et al. Effect of progressive addition lenses on myopia progression in Japanese children: a prospective, randomized, double-masked, crossover trial. Invest Ophthalmol Vis Sci. 2008;49:2781–9.

    Article  PubMed  Google Scholar 

  14. Berntsen DA, Sinnott LT, Mutti DO, Zadnik K. A randomized trial using progressive addition lenses to evaluate theories of myopia progression in children with a high lag of accommodation. Invest Ophthalmol Vis Sci. 2012;53:640–9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Walline JJ, Lindsley K, Vedula SS, Cotter SA, Mutti DO, Twelker JD. Interventions to slow progression of myopia in children. Cochrane Database Syst Rev. 2011:Cd004916.

  16. Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest Ophthalmol Vis Sci. 2012;53:7077–85.

    Article  PubMed  Google Scholar 

  17. Sun Y, Xu F, Zhang T, Liu M, Wang D, Chen Y, et al. Orthokeratology to control myopia progression: a meta-analysis. PLoS One. 2015;10:e0124535.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kang P, McAlinden C, Wildsoet CF. Effects of multifocal soft contact lenses used to slow myopia progression on quality of vision in young adults. Acta Ophthalmol. 2017;95:e43–e53.

    Article  PubMed  Google Scholar 

  19. Xiong S, Sankaridurg P, Naduvilath T, Zang J, Zou H, Zhu J, et al. Time spent in outdoor activities in relation to myopia prevention and control: a meta-analysis and systematic review. Acta Ophthalmol. 2017;95:551–66.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Saw SM. A synopsis of the prevalence rates and environmental risk factors for myopia. Clin Exp Optom. 2003;86:289–94.

    Article  PubMed  Google Scholar 

  21. Jiang Y, Zhu Z, Tan X, Kong X, Zhong H, Zhang J, et al. Effect of repeated low-level red-light therapy for myopia control in children: a multicenter randomized controlled trial. Ophthalmology. 2021;129:509–19.

    Article  PubMed  Google Scholar 

  22. Smith EL 3rd, Kee CS, Ramamirtham R, Qiao-Grider Y, Hung LF. Peripheral vision can influence eye growth and refractive development in infant monkeys. Invest Ophthalmol Vis Sci. 2005;46:3965–72.

    Article  PubMed  Google Scholar 

  23. Gwiazda J, Thorn F, Bauer J, Held R. Myopic children show insufficient accommodative response to blur. Invest Ophthalmol Vis Sci. 1993;34:690–4.

    CAS  PubMed  Google Scholar 

  24. McBrien NA, Moghaddam HO, Reeder AP. Atropine reduces experimental myopia and eye enlargement via a nonaccommodative mechanism. Invest Ophthalmol Vis Sci. 1993;34:205–15.

    CAS  PubMed  Google Scholar 

  25. Rose KA, Morgan IG, Ip J, Kifley A, Huynh S, Smith W, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115:1279–85.

    Article  PubMed  Google Scholar 

  26. Kinoshita N, Konno Y, Hamada N, Kanda Y, Shimmura-Tomita M, Kaburaki T, et al. Efficacy of combined orthokeratology and 0.01% atropine solution for slowing axial elongation in children with myopia: a 2-year randomised trial. Sci Rep. 2020;10:12750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Tan Q, Ng AL, Choy BN, Cheng GP, Woo VC, Cho P. One-year results of 0.01% atropine with orthokeratology (AOK) study: a randomised clinical trial. Ophthalmic Physiol Opt. 2020;40:557–66.

    Article  PubMed  Google Scholar 

  28. Zhao Q, Hao Q. Clinical efficacy of 0.01% atropine in retarding the progression of myopia in children. Int Ophthalmol. 2021;41:1011–7.

    Article  PubMed  Google Scholar 

  29. Charm J, Cho P. High myopia–partial reduction ortho-k: a 2-year randomized study. Optom Vis Sci. 2013;90:530–9.

    Article  PubMed  Google Scholar 

  30. Chua WH, Balakrishnan V, Chan YH, Tong L, Ling Y, Quah BL, et al. Atropine for the treatment of childhood myopia. Ophthalmology. 2006;113:2285–91.

    Article  PubMed  Google Scholar 

  31. Fan DSP, Lam DSC, Chan CKM, Fan AH, Cheung EYY, Rao SK. Topical atropine in retarding myopic progression and axial length growth in children with moderate to severe myopia: a pilot study. Jpn J Ophthalmol. 2007;51:27–33.

    Article  CAS  PubMed  Google Scholar 

  32. Zhu Q, Tang Y, Guo L, Tighe S, Zhou Y, Zhang X, et al. Efficacy and safety of 1% atropine on retardation of moderate myopia progression in chinese school children. Int J Med Sci. 2020;17:176–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang YR, Bian HL, Wang Q. Atropine 0.5% eyedrops for the treatment of children with low myopia: A randomized controlled trial. Medicine (Baltimore). 2017;96:e7371.

    Article  CAS  PubMed  Google Scholar 

  34. Chia A, Chua WH, Cheung YB, Wong WL, Lingham A, Fong A, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2). Ophthalmology. 2012;119:347–54.

    Article  PubMed  Google Scholar 

  35. Li FF, Kam KW, Zhang Y, Tang SM, Young AL, Chen LJ, et al. Differential effects on ocular biometrics by 0.05%, 0.025%, and 0.01% atropine: low-concentration atropine for myopia progression study. Ophthalmology. 2020;127:1603–11.

    Article  PubMed  Google Scholar 

  36. Fu A, Stapleton F, Wei L, Wang W, Zhao B, Watt K, et al. Effect of low-dose atropine on myopia progression, pupil diameter and accommodative amplitude: low-dose atropine and myopia progression. Br J Ophthalmol. 2020;104:1535–41.

    PubMed  Google Scholar 

  37. Chaurasia S, Negi S, Kumar A, Raj S, Kaushik S, Optom RKM, et al. Efficacy of 0.01% low dose atropine and its correlation with various factors in myopia control in the Indian population. Sci Rep. 2022;12:7113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jethani J. Efficacy of low-concentration atropine (0.01%) eye drops for prevention of axial myopic progression in premyopes. Indian J Ophthalmol. 2021;70:238–40.

    Article  PubMed Central  Google Scholar 

  39. Moriche-Carretero M, Revilla-Amores R, Diaz-Valle D, Morales-Fernández L, Gomez-de-Liaño R. Myopia progression and axial elongation in Spanish children: efficacy of atropine 0.01% eye-drops. J Fr Ophtalmol. 2021;44:1499–504.

    Article  CAS  PubMed  Google Scholar 

  40. Wei S, Li SM, An W, Du J, Liang X, Sun Y, et al. Safety and efficacy of low-dose atropine eyedrops for the treatment of myopia progression in Chinese children: a randomized clinical trial. JAMA ophthalmology. 2020;138:1178–84.

    Article  PubMed  Google Scholar 

  41. Ruiz-Pomeda A, Pérez-Sánchez B, Valls I, Prieto-Garrido FL, Gutiérrez-Ortega R, Villa-Collar C. MiSight Assessment Study Spain (MASS). A 2-year randomized clinical trial. Graefes Arch Clin Exp Ophthalmol. 2018;256:1011–21.

    Article  PubMed  Google Scholar 

  42. Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutierrez-Ortega R. Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Invest Ophthalmol Vis Sci. 2012;53:5060–5.

    Article  PubMed  Google Scholar 

  43. Tang WT, Li JQ, Zhou LS, Yu Q. Effect of orthokeratology on relative peripheral refraction in adolescent myopia. International eye science. 2021;21:734–7.

    Google Scholar 

  44. Walline JJ, Jones LA, Sinnott LT. Corneal reshaping and myopia progression. Br J Ophthalmol. 2009;93:1181–5.

    Article  CAS  PubMed  Google Scholar 

  45. Zhao HL, Jiang J, Yu J, Xu HM. Role of short-wavelength filtering lenses in delaying myopia progression and amelioration of asthenopia in juveniles. Int J Ophthalmol. 2017;10:1261–7.

    PubMed  PubMed Central  Google Scholar 

  46. Lam CSY, Tang WC, Tse DY, Lee RPK, Chun RKM, Hasegawa K, et al. Defocus Incorporated Multiple Segments (DIMS) spectacle lenses slow myopia progression: a 2-year randomised clinical trial. Br J Ophthalmol. 2020;104:363–8.

    Article  PubMed  Google Scholar 

  47. Hasebe S, Jun J, Varnas SR. Myopia control with positively aspherized progressive addition lenses: a 2-year, multicenter, randomized, controlled trial. Invest Ophthalmol Vis Sci. 2014;55:7177–88.

    Article  PubMed  Google Scholar 

  48. Leung JTM, Brown B. Progression of myopia in Hong Kong Chinese schoolchildren is slowed by wearing progressive lenses. Optom Vis Sci. 1999;76:346–54.

    Article  CAS  PubMed  Google Scholar 

  49. Gwiazda JE. Progressive-addition lenses versus single-vision lenses for slowing progression of myopia in children with high accommodative lag and near esophoria. Invest Ophthalmol Vis Sci. 2011;52:2749–57.

    Article  Google Scholar 

  50. Edwards MH, Li RW, Lam CS, Lew JK, Yu BS. The Hong Kong progressive lens myopia control study: study design and main findings. Invest Ophthalmol Vis Sci. 2002;43:2852–8.

    PubMed  Google Scholar 

  51. Zhu X, Wang D, Li N, Zhao F. Effects of customized progressive addition lenses vs. single vision lenses on myopia progression in children with esophoria: a randomized clinical trial. Journal of ophthalmology. 2022;2022:9972761.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Huang JO, Wei XH. Effect of peripheral vision control technology in the development of juvenile myopia. International eye science. 2015;15:378–80.

    Google Scholar 

  53. Bao J, Huang Y, Li X, Yang A, Zhou F, Wu J, et al. Spectacle lenses with aspherical lenslets for myopia control vs single-vision spectacle lenses: a randomized clinical trial. JAMA ophthalmology. 2022;140:472–8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Adler D, Millodot M. The possible effect of undercorrection on myopic progression in children. Clinical and Experimental Optometry. 2006;89:315–21.

    Article  PubMed  Google Scholar 

  55. Aller TA, Liu M, Wildsoet CF. Myopia control with bifocal contact lenses: a randomized clinical trial. Optom Vis Sci. 2016;93:344–52.

    Article  PubMed  Google Scholar 

  56. Sankaridurg P, Bakaraju RC, Naduvilath T, Chen X, Weng R, Tilia D, et al. Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial. Ophthalmic Physiol Opt. 2019;39:294–307.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Chamberlain P, Peixoto-de-Matos SC, Logan NS, Ngo C, Jones D, Young G. A 3-year randomized clinical trial of misight lenses for myopia control. Optom Vis Sci. 2019;96:556–67.

    Article  PubMed  Google Scholar 

  58. Shen EP, Chu HS, Cheng HC, Tsai TH. Center-for-near extended-depth-of-focus soft contact lens for myopia control in children: 1-year results of a randomized controlled trial. Ophthalmol Ther. 2022;11:1577–88.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Fujikado T, Ninomiya S, Kobayashi T, Suzaki A, Nakada M, Nishida K. Effect of low-addition soft contact lenses with decentered optical design on myopia progression in children: a pilot study. Clin Ophthalmol. 2014;8:1947–56.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Walline JJ, Walker MK, Mutti DO, Jones-Jordan LA, Sinnott LT, Giannoni AG, et al. Effect of high add power, medium add power, or single-vision contact lenses on myopia progression in children: The BLINK randomized clinical trial. JAMA. 2020;324:571–80.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Walline JJ, Greiner KL, McVey ME, Jones-Jordan LA. Multifocal contact lens myopia control. Optom Vis Sci. 2013;90:1207–14.

    Article  PubMed  Google Scholar 

  62. Walline JJ, Jones LA, Mutti DO, Zadnik K. A randomized trial of the effects of rigid contact lenses on myopia progression. Arch Ophthalmol. 2004;122:1760–6.

    Article  PubMed  Google Scholar 

  63. Cheng X, Xu J, Chehab K, Exford J, Brennan N. Soft contact lenses with positive spherical aberration for myopia control. Optom Vis Sci. 2016;93:353–66.

    Article  PubMed  Google Scholar 

  64. He M, Xiang F, Zeng Y, Mai J, Chen Q, Zhang J, et al. Effect of time spent outdoors at school on the development of myopia among children in China: a randomized clinical trial. JAMA. 2015;314:1142–8.

    Article  CAS  PubMed  Google Scholar 

  65. He X, Sankaridurg P, Wang J, Chen J, Naduvilath T, He M, et al. Time outdoors in reducing myopia: a school-based cluster randomized trial with objective monitoring of outdoor time and light intensity. Ophthalmology. 2022;129:1245–54.

    Article  PubMed  Google Scholar 

  66. Wu PC, Chen CT, Lin KK, Sun CC, Kuo CN, Huang HM, et al. Myopia prevention and outdoor light intensity in a school-based cluster randomized trial. Ophthalmology. 2018;125:1239–50.

    Article  Google Scholar 

  67. Gong Q, Liu L. Therapeutic effect of atropine 1% in children with low myopia. J AAPOS. 2016;20:379.

    Article  PubMed  Google Scholar 

  68. Tan Q, Ng AL, Cheng GP, Woo VC, Cho P. Combined 0.01% atropine with orthokeratology in childhood myopia control (AOK) study: A 2-year randomized clinical trial. Cont Lens Anterior Eye. 2022;46:101723.

    Article  PubMed  Google Scholar 

  69. Zhang H, Chen M. Curative effects and mechanisms of atropine with a long term use on myopia in children (in Chinese) [J]. Recent Adv. Ophthalmol. 2009;29:851–4.

    Google Scholar 

  70. Fulk GW, Cyert LA, Parker DE. A randomized trial of the effect of single-vision vs. bifocal lenses on myopia progression in children with esophoria. Optom Vis Sci. 2000;77:395–401.

    Article  CAS  PubMed  Google Scholar 

  71. Kam KW, Yung W, Li GKH, Chen LJ, Young AL. Infectious keratitis and orthokeratology lens use: a systematic review. Infection. 2017;45:727–35.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of China under Grant [No. 82171026].

Author information

Authors and Affiliations

Authors

Contributions

GZ and JJ extracted data from published studies and analysed the results. GZ retrieved, ranked documents and drafted the manuscript. CQ provided oversight for the extraction and analysis and identified the accuracy of results and discussion presented in the manuscript.

Corresponding author

Correspondence to Chao Qu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

An ethics statement is not applicable because this study is based exclusively on published literature.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Jiang, J. & Qu, C. Myopia prevention and control in children: a systematic review and network meta-analysis. Eye 37, 3461–3469 (2023). https://doi.org/10.1038/s41433-023-02534-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02534-8

Search

Quick links