Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The role of a multicentre data repository in ocular inflammation: The Ocular Autoimmune Systemic Inflammatory Infectious Study (OASIS)

Abstract

In the current literature, clinical registry cohorts related to ocular inflammation are few and far between, and there are none involving multi-continental international data. Many existing registries comprise administrative databases, data related to specific uveitic diseases, or are designed to address a particular clinical problem. The existing data, although useful and serving their intended purposes, are segmented and may not be sufficiently robust to design prognostication tools or draw epidemiological conclusions in the field of uveitis and ocular inflammation. To solve this, we have developed the Ocular Autoimmune Systemic Inflammatory Infectious Study (OASIS) Clinical Registry. OASIS collects prospective and retrospective data on patients with all types of ocular inflammatory conditions from centers all around the world. It is a primarily web-based platform with alternative offline modes of access. A comprehensive set of clinical data ranging from demographics, past medical history, clinical presentation, working diagnosis to visual outcomes are collected over a range of time points. Additionally, clinical images such as optical coherence tomography, fundus fluorescein angiography and indocyanine green angiography studies may be uploaded. Through the capturing of diverse, well-structured, and clinically meaningful data in a simplified and consistent fashion, OASIS will deliver a comprehensive and well organized data set ripe for data analysis. The applications of the registry are numerous, and include performing epidemiological analysis, monitoring drug side effects, and studying treatment safety efficacy. Furthermore, the data compiled in OASIS will be used to develop new classification and diagnostic systems, as well as treatment and prognostication guidelines for uveitis.

摘要

现有文献中, 与眼部炎症相关的临床注册队列很少, 而且没有涉及多中心的国际数据。许多现有的数据库, 包括行政数据库、与特定葡萄球菌疾病有关的数据, 是为了解决特定的临床问题。现有数据库虽然有用且服务于其预期目的, 但数据是不连续的, 可能不足以设计预测工具或得出葡萄膜炎和眼部炎症领域的流行病学结论。为了解决这个问题, 我们开发了眼部自身免疫性全身炎症感染研究 (OASIS) 临床注册数据库。OASIS从世界各地的中心收集所有类型的眼部炎症患者的前瞻性和回顾性数据。它是主要基于Web的平台, 也具有备选的离线访问模式。OASIS在一系列时间点收集了一组全面的临床数据, 从人口统计学、既往病史、临床表现、工作诊断到视觉结局。此外, OASIS可以上传临床图像, 例如相干光断层扫描, 荧光素血管造影和吲哚菁绿血管造影研究。OASIS通过以简化和固定的方式捕获多样化、结构良好且具有临床意义的数据, 提供全面且整理完善的数据集, 适合数据的分析。该数据集的应用很多, 包括进行流行病学分析、监测药物的副作用和研究治疗的安全性。此外, OASIS汇编的数据将用于开发新的分类和诊断系统, 以及葡萄膜炎的治疗和预后指南。

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A screenshot displaying the data points collected on the Working Diagnosis page of the OASIS Clinical Registry.
Fig. 2: A screenshot displaying the data points collected on the “Visit Summary” page of the OASIS platform.
Fig. 3: A screenshot displaying the data points collected on the “Course of disease” page of the OASIS platform.
Fig. 4: A screenshot of the Overview Tab (boxed in red) shown at the top of each patient record.
Fig. 5: A diagrammatic representation of the process of data and image processing using artificial intelligence (AI) in the OASIS registry.
Fig. 6: The proposed OASIS classification complementing the existing SUN Working Group criteria.
Fig. 7: A diagrammatic representation of a step-ladder approach to diagnosis of uveitic conditions.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  1. Kempen JH, Daniel E, Gangaputra S, Dreger K, Jabs DA, Kaçmaz RO, et al. Methods for identifying long-term adverse effects of treatment in patients with eye diseases: the Systemic Immunosuppressive Therapy for Eye Diseases (SITE) Cohort Study. Ophthalmic Epidemiol. 2008;15:47–55.

    Article  PubMed  Google Scholar 

  2. Multicenter Uveitis Steroid Treatment Trial Research Group, Kempen JH, Altaweel MM, Holbrook JT, Jabs DA, Sugar EA. The multicenter uveitis steroid treatment trial: rationale, design, and baseline characteristics. Am J Ophthalmol. 2010;149:550–561.e10.

    Article  Google Scholar 

  3. Rathinam SR, Gonzales JA, Thundikandy R, Kanakath A, Murugan SB, Vedhanayaki R, et al. Effect of corticosteroid-sparing treatment with mycophenolate mofetil vs methotrexate on inflammation in patients with uveitis: a randomized clinical trial. JAMA. 2019;322:936–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jaffe GJ, Dick AD, Brézin AP, Nguyen QD, Thorne JE, Kestelyn P, et al. Adalimumab in patients with active noninfectious uveitis. N. Engl J Med. 2016;375:932–43.

    Article  CAS  PubMed  Google Scholar 

  5. Nguyen QD, Merrill PT, Jaffe GJ, Dick AD, Kurup SK, Sheppard J, et al. Adalimumab for prevention of uveitic flare in patients with inactive non-infectious uveitis controlled by corticosteroids (VISUAL II): a multicentre, double-masked, randomised, placebo-controlled phase 3 trial. Lancet. 2016;388:1183–92.

    Article  CAS  PubMed  Google Scholar 

  6. Ramanan AV, Dick AD, Jones AP, McKay A, Williamson PR, Compeyrot-Lacassagne S, et al. Adalimumab plus Methotrexate for Uveitis in Juvenile Idiopathic Arthritis. N. Engl J Med. 2017;376:1637–46.

    Article  CAS  PubMed  Google Scholar 

  7. Detels R, Muñoz A, McFarlane G, Kingsley LA, Margolick JB, Giorgi J, et al. Effectiveness of potent antiretroviral therapy on time to AIDS and death in men with known HIV infection duration. JAMA. 1998;280:1497–503.

    Article  CAS  PubMed  Google Scholar 

  8. Thio CL, Seaberg EC, Skolasky R Jr, Phair J, Visscher B, Muñoz A, et al. HIV-1, hepatitis B virus, and risk of liver-related mortality in the Multicenter Cohort Study (MACS). Lancet. 2002;360:1921–6.

    Article  PubMed  Google Scholar 

  9. Tan JCK, Ferdi AC, Gillies MC, Watson SL. Clinical registries in ophthalmology. Ophthalmology. 2019;126:655–62.

    Article  PubMed  Google Scholar 

  10. Li JQ, Heinz C, Dell J, Schmid M, Finger RP. Treatment exit options for non-infectious uveitis (TOFU): study protocol for a prospective clinical registry. Ophthalmic Epidemiol. 2021;21:1–8.

  11. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for acute posterior multifocal placoid pigment epitheliopathy. Am J Ophthalmol. 2021;228:174–81.

    Article  Google Scholar 

  12. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for acute retinal necrosis syndrome. Am J Ophthalmol. 2021;228:237–44.

    Article  Google Scholar 

  13. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for birdshot chorioretinitis. Am J Ophthalmol. 2021;228:65–71.

    Article  Google Scholar 

  14. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for behçet disease uveitis. Am J Ophthalmol. 2021;228:80–8.

    Article  Google Scholar 

  15. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for cytomegalovirus anterior uveitis. Am J Ophthalmol. 2021;228:89–95.

    Article  Google Scholar 

  16. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for cytomegalovirus retinitis. Am J Ophthalmol. 2021;228:245–54.

    Article  Google Scholar 

  17. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for fuchs uveitis syndrome. Am J Ophthalmol. 2021;228:262–7.

    Article  Google Scholar 

  18. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for herpes simplex virus anterior uveitis. Am J Ophthalmol. 2021;228:231–6.

    Article  Google Scholar 

  19. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for intermediate uveitis, non-pars planitis type. Am J Ophthalmol. 2021;228:159–64.

    Article  Google Scholar 

  20. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for juvenile idiopathic arthritis–associated chronic anterior uveitis. Am J Ophthalmol. 2021;228:192–7.

    Article  Google Scholar 

  21. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for multifocal choroiditis with panuveitis. Am J Ophthalmol. 2021;228:152–8.

    Article  Google Scholar 

  22. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for multiple evanescent white dot syndrome. Am J Ophthalmol. 2021;228:198–204.

    Article  Google Scholar 

  23. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for multiple sclerosis-associated intermediate uveitis. Am J Ophthalmol. 2021;228:72–9.

    Article  Google Scholar 

  24. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for pars planitis. Am J Ophthalmol. 2021;228:268–74.

    Article  Google Scholar 

  25. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for punctate inner choroiditis. Am J Ophthalmol. 2021;228:275–80.

    Article  Google Scholar 

  26. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for sarcoidosis-associated uveitis. Am J Ophthalmol. 2021;228:220–30.

    Article  Google Scholar 

  27. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for serpiginous choroiditis. Am J Ophthalmol. 2021;228:126–33.

    Article  Google Scholar 

  28. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for spondyloarthritis/HLA-B27-associated anterior uveitis. Am J Ophthalmol. 2021;228:117–25.

    Article  Google Scholar 

  29. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for sympathetic ophthalmia. Am J Ophthalmol. 2021;228:212–9.

    Article  Google Scholar 

  30. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for syphilitic uveitis. Am J Ophthalmol. 2021;228:182–91. Aug

    Article  Google Scholar 

  31. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for toxoplasmic retinitis. Am J Ophthalmol. 2021;228:134–41.

    Article  Google Scholar 

  32. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for tubercular uveitis. Am J Ophthalmol. 2021;228:142–51.

    Article  Google Scholar 

  33. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for tubulointerstitial nephritis with uveitis syndrome. Am J Ophthalmol. 2021;228:255–61.

    Article  Google Scholar 

  34. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for varicella zoster virus anterior uveitis. Am J Ophthalmol. 2021;228:165–73.

    Article  Google Scholar 

  35. Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for vogt-koyanagi-harada disease. Am J Ophthalmol. 2021;228:205–11.

    Article  Google Scholar 

  36. Murray P. The standardization of Uveitis Nomenclature (SUN) working group. Standardization of uveitis nomenclature for reporting clinical data. Results of the first international workshop. Am J Ophthalmol. 2005;3:509–16.

    Google Scholar 

  37. Agrawal R, Testi I, Mahajan S, Yuen YS, Agarwal A, Kon OM, et al. Collaborative Ocular Tuberculosis Study consensus guidelines on the management of tubercular uveitis-report 1: guidelines for initiating antitubercular therapy in tubercular choroiditis. Ophthalmology. 2021;128:266–76.

    Article  PubMed  Google Scholar 

  38. Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun ACM. 2017;60:84–90.

    Article  Google Scholar 

  39. Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [Internet]. arXiv [cs.CV]. 2016. Available from: http://arxiv.org/abs/1602.07360

  40. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition [Internet]. arXiv [cs.CV]. 2014. Available from: http://arxiv.org/abs/1409.1556

  41. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015. p. 1–9.

  42. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition [Internet]. arXiv [cs.CV]. 2015. Available from: http://arxiv.org/abs/1512.03385

  43. Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely Connected Convolutional Networks [Internet]. arXiv [cs.CV]. 2016. Available from: http://arxiv.org/abs/1608.06993

  44. Chollet F Xception: Deep Learning with Depthwise Separable Convolutions. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2017. p. 1800–7.

  45. Ren S, He K, Girshick R, Sun J. Faster R-CNN: Towards real-time object detection with region proposal networks. IEEE Trans Pattern Anal Mach Intell. 2017;39:1137–49.

    Article  PubMed  Google Scholar 

  46. Hyvärinen A, Oja E. Independent component analysis: algorithms and applications. Neural Netw. 2000;13:411–30.

    Article  PubMed  Google Scholar 

  47. Tenenbaum JB, de Silva V, Langford JC. A global geometric framework for nonlinear dimensionality reduction. Science. 2000;290:2319–23.

    Article  CAS  PubMed  Google Scholar 

  48. Zimmer VA, Lekadir K, Hoogendoorn C, Frangi AF, Piella G. A framework for optimal kernel-based manifold embedding of medical image data. Comput Med Imaging Graph. 2015;41:93–107.

    Article  PubMed  Google Scholar 

  49. Zheng H-T, Borchert C, Jiang Y. A knowledge-driven approach to biomedical document conceptualization. Artif Intell Med. 2010;49:67–78.

    Article  PubMed  Google Scholar 

  50. Rosipal R, Krämer N. Overview and recent advances in partial least squares. In: Subspace, Latent Structure and Feature Selection. Springer Berlin Heidelberg; 2006. p. 34–51.

  51. Jolliffe IT, Cadima J. Principal component analysis: a review and recent developments. Philos Trans A Math Phys Eng Sci. 2016;374:20150202.

    PubMed  PubMed Central  Google Scholar 

  52. Gola D, Mahachie John JM, van Steen K, König IR. A roadmap to multifactor dimensionality reduction methods. Brief Bioinform. 2016;17:293–308.

    Article  PubMed  Google Scholar 

  53. Pratihar DK. Non-Linear Dimensionality Reduction Techniques [Internet]. Encyclopedia of Data Warehousing and Mining, Second Edition. 2009. p. 1416–24. Available from: https://doi.org/10.4018/978-1-60566-010-3.ch219

  54. Han L, Wu Z, Zeng K, Yang X. Online multilinear principal component analysis. Neurocomputing. 2018;275:888–96.

    Article  Google Scholar 

  55. Lu H, Plataniotis KN, Venetsanopoulos AN. A survey of multilinear subspace learning for tensor data. Pattern Recognit. 2011;44:1540–51.

    Article  Google Scholar 

  56. Learning the Kernel Matrix with Semi-definite Programming. Computer Science Division, University of California; 2002. 84.

  57. Bank D, Koenigstein N, Giryes R. Autoencoders [Internet]. arXiv [cs.LG]. 2020. Available from: http://arxiv.org/abs/2003.05991

  58. The 1000 Genomes Project Consortium, Auton A, Abecasis GR, Altshuler DM, Durbin RM, Abecasis GR, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  Google Scholar 

  59. ENCODE Project Consortium. The ENCODE (ENCyclopedia Of DNA elements) project. Science. 2004;306:636–40.

    Article  Google Scholar 

  60. Tomczak K, Czerwińska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge. Contemp Oncol (Pozn). 2015;19:A68–77.

    PubMed  Google Scholar 

  61. Chen EJ, Bin Ismail MA, Mi H, Ho SL, Lim WK, Teoh SC, et al. Ocular autoimmune systemic inflammatory infectious study (OASIS) - report 1: epidemiology and classification. Ocul Immunol Inflamm. 2018;26:732–46.

    Article  CAS  PubMed  Google Scholar 

  62. M A, El-Asrar A, Abouammoh M, Al-Mezaine HS. Tuberculous uveitis. Middle East Afr J Ophthalmol. 2009;16:188–201.

    PubMed  Google Scholar 

  63. Rao NA, Rajendram R, See RF Vogt-Koyanagi-Harada Disease. In: Retinal Imaging. Elsevier; 2006. p. 343–8.

  64. Sazzini M, Garagnani P, Sarno S, De Fanti S, Lazzano T, Yang Yao D, et al. Tracing Behçet’s disease origins along the Silk Road: an anthropological evolutionary genetics perspective. Clin Exp Rheumatol. 2015;33:S60–6.

    PubMed  Google Scholar 

  65. Jabs DA, Nussenblatt RB, Rosenbaum JT, Standardization of Uveitis Nomenclature (SUN) Working Group. Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol. 2005;140:509–16.

    Article  PubMed  Google Scholar 

  66. Standardization of Uveitis Nomenclature (SUN) Working Group. Development of classification criteria for the uveitides. Am J Ophthalmol. 2021;228:96–105.

    Article  Google Scholar 

  67. Ting DSW, Cheung CY-L, Lim G, Tan GSW, Quang ND, Gan A, et al. Development and validation of a deep learning system for diabetic retinopathy and related eye diseases using retinal images from multiethnic populations with diabetes. JAMA. 2017;318:2211–23.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Low R, Chen EJ, Bin Ismail MA, Mi H, Ling HS, Lim WK, et al. Ocular autoimmune systemic inflammatory infectious study (OASIS) - report 2: pattern of uveitis investigations in Singapore. Ocul Immunol Inflamm. 2020;28:92–9.

    Article  CAS  PubMed  Google Scholar 

  69. Agrawal R, Testi I, Bodaghi B, Barisani-Asenbauer T, McCluskey P, Agarwal A, et al. Collaborative ocular tuberculosis study consensus guidelines on the management of tubercular uveitis-report 2: guidelines for initiating antitubercular therapy in anterior uveitis, intermediate uveitis, panuveitis, and retinal vasculitis. Ophthalmology. 2021;128:277–87.

    Article  PubMed  Google Scholar 

  70. Kamath PS, Kim WR, Advanced Liver Disease Study Group. The model for end-stage liver disease (MELD). Hepatology. 2007;45:797–805.

    Article  PubMed  Google Scholar 

  71. Casey BM, McIntire DD, Leveno KJ. The continuing value of the Apgar score for the assessment of newborn infants. N. Engl J Med. 2001;344:467–71.

    Article  CAS  PubMed  Google Scholar 

  72. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF 3rd, Feldman HI, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–12.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kuhn F, Maisiak R, Mann L, Mester V, Morris R, Witherspoon CD. The Ocular Trauma Score (OTS). Ophthalmol Clin North Am. 2002;15:163–5.

    Article  PubMed  Google Scholar 

  74. Cecchin V, Zannin ME, Ferrari D, Pontikaki I, Miserocchi E, Paroli MP, et al. Longterm safety and efficacy of adalimumab and infliximab for uveitis associated with juvenile idiopathic arthritis. J Rheumatol. 2018;45:1167–72.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

RA received funding from National Medical Research Council, Ministry of Health, Singapore for his project entitled “To establish a predictive artificial intelligence (AI) based model using immune-phenotype correlation for disease stratification and prognosis in patients with ocular tuberculosis (OTB)”, Grant: MOH/NMRC/CSAINV/19nov-007.

Author information

Authors and Affiliations

Authors

Consortia

Contributions

The authors confirm their contribution to the paper as follows: study conception and design: RA, VG, JHK; data collection: all authors; analysis and interpretation of results: RA, BL, SMSN, RL, JHK; draft manuscript preparation: all authors. All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Rupesh Agrawal.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ng, S.M.S., Low, R., Pak, C. et al. The role of a multicentre data repository in ocular inflammation: The Ocular Autoimmune Systemic Inflammatory Infectious Study (OASIS). Eye 37, 3084–3096 (2023). https://doi.org/10.1038/s41433-023-02472-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-023-02472-5

This article is cited by

Search

Quick links