Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Perspectives of diabetic retinopathy—challenges and opportunities

Abstract

Diabetic retinopathy (DR) may lead to vision-threatening complications in people living with diabetes mellitus. Decades of research have contributed to our understanding of the pathogenesis of diabetic retinopathy from non-proliferative to proliferative (PDR) stages, the occurrence of diabetic macular oedema (DMO) and response to various treatment options. Multimodal imaging has paved the way to predict the impact of peripheral lesions and optical coherence tomography-angiography is starting to provide new knowledge on diabetic macular ischaemia. Moreover, the availability of intravitreal anti-vascular endothelial growth factors has changed the treatment paradigm of DMO and PDR. Areas of research have explored mechanisms of breakdown of the blood-retinal barrier, damage to pericytes, the extent of capillary non-perfusion, leakage and progression to neovascularisation. However, knowledge gaps remain. From this perspective, we highlight the challenges and future directions of research in this field.

摘要

糖尿病视网膜病变 (DR) 可导致糖尿病患者出现威胁视力的并发症。数十年的研究有助于我们了解糖尿病视网膜病变从非增殖期 (NPDR) 到增殖期 (PDR) 的发病机制, 糖尿病黄斑水肿 (DMO) 的发生和对各种治疗方案的反应。多模态成像为视网膜周边病变提供了有力武器, 光学相干断层成像-血管造影 (OCTA) 已经广泛应用于糖尿病黄斑缺血的诊断。此外, 玻璃体内抗血管内皮生长因子 (抗-VEGF) 药物的应用改变了DMO和PDR的治疗模式。在研究领域对血-视网膜屏障破坏, 周细胞损伤, 毛细血管无灌注, 渗漏和新生血管的发生机制进行了阐述。然而, 我们仍然面临着许多未知。本文, 我们强调了这个领域的挑战和未来的发展方向。

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Yau JWY, Rogers SL, Kawasaki R, Lamoureux EL, Kowalski JW, Bek T, et al. Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care. 2012;35:556–64.

    PubMed  PubMed Central  Google Scholar 

  2. Kempen JH, O’Colmain BJ, Leske MC, Haffner SM, Klein R, Moss SE, et al. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol. 2004;122:552–63.

    PubMed  Google Scholar 

  3. Curtis TM, Gardiner TA, Stitt AW. Microvascular lesions of diabetic retinopathy: clues towards understanding pathogenesis? Eye (Lond). 2009;23:1496–508.

    CAS  PubMed  Google Scholar 

  4. Gardiner TA, Archer DB, Curtis TM, Stitt AW. Arteriolar involvement in the microvascular lesions of diabetic retinopathy: implications for pathogenesis. Microcirculation. 2007;14:25–38.

    PubMed  Google Scholar 

  5. Kern TS, Engerman RL. Vascular lesions in diabetes are distributed non-uniformly within the retina. Exp Eye Res. 1995;60:545–9.

    CAS  PubMed  Google Scholar 

  6. Feng Y, Wang Y, Stock O, Pfister F, Tanimoto N, Seeliger MW, et al. Vasoregression linked to neuronal damage in the rat with defect of polycystin-2. PLoS One. 2009;4:e7328.

    PubMed  PubMed Central  Google Scholar 

  7. Cogan DG, Kuwabara T. Capillary shunts in the pathogenesis of diabetic retinopathy. Diabetes 1963;12:293–300.

    CAS  PubMed  Google Scholar 

  8. Cunha-Vaz J, Faria de Abreu JR, Campos AJ. Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol. 1975;59:649–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu Y, Leo LF, McGregor C, Grivitishvili A, Barnstable CJ, Tombran-Tink J. Pigment epithelium-derived factor (PEDF) peptide eye drops reduce inflammation, cell death and vascular leakage in diabetic retinopathy in Ins2(Akita) mice. Mol Med. 2012;18:1387–401.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N. Engl J Med. 2012;366:1227–39.

    CAS  PubMed  Google Scholar 

  11. Lecleire-Collet A, Audo I, Aout M, Girmens J-F, Sofroni R, Erginay A, et al. Evaluation of retinal function and flicker light-induced retinal vascular response in normotensive patients with diabetes without retinopathy. Investig Opthalmology Vis Sci. 2011;52:2861.

    Google Scholar 

  12. Luu CD, Szental JA, Lee S-Y, Lavanya R, Wong TY. Correlation between retinal oscillatory potentials and retinal vascular caliber in type 2 diabetes. Invest Ophthalmol Vis Sci. 2010;51:482–6.

    PubMed  Google Scholar 

  13. Cunha-Vaz J, Faria De Abreu JR, Campos AJ, Figo GM. Early breakdown of the blood-retinal barrier in diabetes. Br J Ophthalmol. 1975;59:649–56.

  14. Daley ML, Watzke RC, Riddle MC. Early loss of blue-sensitive color vision in patients with type I diabetes. Diabetes Care. 1987;10:777–81.

    CAS  PubMed  Google Scholar 

  15. Silva KC, Rosales MAB, Biswas SK, Lopes de Faria JB, Lopes de Faria JM. Diabetic retinal neurodegeneration is associated with mitochondrial oxidative stress and is improved by an angiotensin receptor blocker in a model combining hypertension and diabetes. Diabetes 2009;58:1382–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hammes H-P. Pericytes and the pathogenesis of diabetic retinopathy. Horm Metab Res. 2005;37:39–43.

    PubMed  Google Scholar 

  17. Ejaz S, Chekarova I, Ejaz A, Sohail A, Lim CW. Importance of pericytes and mechanisms of pericyte loss during diabetes retinopathy. Diabetes Obes Metab. 2008;10:53–63.

    CAS  PubMed  Google Scholar 

  18. Sohn EH, van Dijk HW, Jiao C, Kok PHBB, Jeong W, Demirkaya N, et al. Retinal neurodegeneration may precede microvascular changes characteristic of diabetic retinopathy in diabetes mellitus. Proc Natl Acad Sci. 2016;113:E2655–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Simó R, Stitt AW, Gardner TW. Neurodegeneration in diabetic retinopathy: does it really matter? Diabetologia 2018;61:1902–12.

    PubMed  PubMed Central  Google Scholar 

  20. Duh EJ, Sun JK, Stitt AW. Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight. 2017;2:e93751.

    PubMed  PubMed Central  Google Scholar 

  21. Engerman RL, Kern TS. Experimental galactosemia produces diabetic-like retinopathy. Diabetes 1984;33:97–100.

    CAS  PubMed  Google Scholar 

  22. Kador PF, Akagi Y, Takahashi Y, Ikebe H, Wyman M, Kinoshita JH. Prevention of retinal vessel changes associated with diabetic retinopathy in galactose-fed dogs by aldose reductase inhibitors. Arch Ophthalmol. 1990;108:1301–9.

    CAS  PubMed  Google Scholar 

  23. Kern TS, Engerman RL. A mouse model of diabetic retinopathy. Arch Ophthalmol. 1996;114:986–90.

    CAS  PubMed  Google Scholar 

  24. Kim K, Kim ES, Kim DG, Yu S-Y. Progressive retinal neurodegeneration and microvascular change in diabetic retinopathy: longitudinal study using OCT angiography. Acta Diabetol. 2019;56:1275–82.

    PubMed  Google Scholar 

  25. Lim HBin, Shin YIL, Lee MW, Koo H, Lee WH, Kim JY. Ganglion cell – inner plexiform layer damage in diabetic patients: 3-year prospective, longitudinal, observational study. Sci Rep. 2020;10:1470.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Wong K. Defining diabetic retinopathy severity. New York, NY: Springer New York; 2010.

  27. Marques IP, Alves D, Santos T, Mendes L, Santos AR, Lobo C, et al. Multimodal imaging of the initial stages of diabetic retinopathy: different disease pathways in different patients. Diabetes 2019;68:648–53.

    CAS  PubMed  Google Scholar 

  28. Nunes S, Ribeiro L, Lobo C, Cunha-Vaz J. Three different phenotypes of mild nonproliferative diabetic retinopathy with different risks for development of clinically significant macular oedema. Investig Ophthalmol Vis Sci. 2013;54:4595–604.

    Google Scholar 

  29. Madeira MH, Marques IP, Ferreira S, Tavares D, Santos T, Santos AR, et al. Retinal neurodegeneration in different risk phenotypes of diabetic retinal disease. Front Neurosci. 2021;15:800004.

  30. Bolinger MT, Antonetti DA. Moving past anti-VEGF: novel therapies for treating diabetic retinopathy. Int J Mol Sci 2016;17:1498.

    PubMed  PubMed Central  Google Scholar 

  31. El-Hattab AW, Zarante AM, Almannai M, Scaglia F. Therapies for mitochondrial diseases and current clinical trials. Mol Genet Metab. 2017;122:1–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Durbin MK, An L, Shemonski ND, Soares M, Santos T, Lopes M, et al. Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol. 2017;135:370.

    PubMed  PubMed Central  Google Scholar 

  33. Ribeiro L, Marques IP, Coimbra R, Santos T, Madeira MH, Santos AR, et al. Characterization of one-year progression of risk phenotypes of diabetic retinopathy. Ophthalmol Ther. 2022;11:333–45.

    PubMed  Google Scholar 

  34. Santos T, Warren LH, Santos AR, Marques IP, Kubach S, Mendes LG, et al. Swept-source OCTA quantification of capillary closure predicts ETDRS severity staging of NPDR. Br J Ophthalmol. 2020;106.

  35. Zhang X, Saaddine JB, Chou C-F, Cotch MF, Cheng YJ, Geiss LS, et al. Prevalence of diabetic retinopathy in the United States, 2005-2008. JAMA 2010;304:649–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early treatment diabetic retinopathy study research Group. Ophthalmology 1991;98:766–85.

    Google Scholar 

  37. Flynn HW, Chew EY, Simons BD, Barton FB, Remaley NA, Ferris FL. Pars plana vitrectomy in the Early Treatment Diabetic Retinopathy Study. ETDRS report number 17. The early treatment diabetic retinopathy Study Research Group. Ophthalmology 1992;99:1351–7.

    PubMed  Google Scholar 

  38. Early Treatment Diabetic Retinopathy Study Research Group. Grading Diabetic Retinopathy from Stereoscopic Color Fundus Photographs—An Extension of the Modified Airlie House Classification: ETDRS Report Number 10. Ophthalmology. 1991;98:786–806.

    Google Scholar 

  39. Wilkinson CP, Ferris FL, Klein RE, Lee PP, Agardh CD, Davis M, et al. Proposed international clinical diabetic retinopathy and diabetic macular oedema disease severity scales. Ophthalmology. 2003;110:167.

    Google Scholar 

  40. Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group, Lachin JM, Genuth S, Cleary P, Davis MD, Nathan DM. Retinopathy and nephropathy in patients with type 1 diabetes four years after a trial of intensive therapy. N. Engl J Med. 2000;342:381–9.

    Google Scholar 

  41. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. UK Prospective Diabetes Study Group. BMJ 1998;317:703–13.

    Google Scholar 

  42. Aiello LP, Odia I, Glassman AR, Melia M, Jampol LM, Bressler NM, et al. Comparison of early treatment diabetic retinopathy study standard 7-field imaging with ultrawide-field imaging for determining severity of diabetic retinopathy. JAMA Ophthalmol. 2019;137:65–73.

    PubMed  Google Scholar 

  43. Witmer AN, Vrensen GFJM, Van Noorden CJF, Schlingemann RO. Vascular endothelial growth factors and angiogenesis in eye disease. Prog Retin Eye Res. 2003;22:1–29.

    CAS  PubMed  Google Scholar 

  44. Martinho AC-V, Marques IP, Messias AL, Santos T, Madeira MH, Sousa DC, et al. Ocular and systemic risk markers for development of macular oedema and proliferative retinopathy in type 2 diabetes: a 5-year longitudinal study. diabetes care. 2020;44:e12–e14.

  45. Cunha-Vaz J, Santos T, Ribeiro L, Alves D, Marques I, Goldberg M. OCT-leakage: a new method to identify and locate abnormal fluid accumulation in diabetic retinal oedema. Invest Ophthalmol Vis Sci. 2016;57:6776–83.

    PubMed  Google Scholar 

  46. Cunha-Vaz J, Santos T, Alves D, Marques I, Neves C, Soares M, et al. Agreement between OCT leakage and fluorescein angiography to identify sites of alteration of the blood-retinal barrier in diabetes. Ophthalmol Retina. 2017;1:395–403.

  47. Sun JK, Radwan SH, Soliman AZ, Lammer J, Lin MM, Prager SG, et al. Neural retinal disorganization as a robust marker of visual acuity in current and resolved diabetic macular edema. Diabetes 2015;64:2560–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Craig-Schapiro R, Fagan AM, Holtzman DM. Biomarkers of Alzheimer’s disease. Neurobiol Dis. 2009;35:128–40.

    CAS  PubMed  Google Scholar 

  49. Težak Ž, Kondratovich MV, Mansfield E. US FDA and personalized medicine: in vitro diagnostic regulatory perspective. Per Med. 2010;7:517–30.

    PubMed  Google Scholar 

  50. Moshfeghi A, Garmo V, Sheinson D, Ghanekar A, Abbass I. Five-year patterns of diabetic retinopathy progression in US clinical practice. Clin Ophthalmol. 2020;14:3651–9.

    PubMed  PubMed Central  Google Scholar 

  51. Stratton IM, Kohner EM, Aldington SJ, Turner RC, Holman RR, Manley SE, et al. UKPDS 50: risk factors for incidence and progression of retinopathy in Type II diabetes over 6 years from diagnosis. Diabetologia 2001;44:156–63.

    CAS  PubMed  Google Scholar 

  52. Klein R, Klein BE, Moss SE, Davis MD, DeMets DL. The Wisconsin Epidemiologic Study of Diabetic Retinopathy. IX. Four-year incidence and progression of diabetic retinopathy when age at diagnosis is less than 30 years. Arch Ophthalmol (Chic, Ill 1960). 1989;107:237–43.

    CAS  Google Scholar 

  53. Cikamatana L, Mitchell P, Rochtchina E, Foran S, Wang JJ. Five-year incidence and progression of diabetic retinopathy in a defined older population: the Blue Mountains Eye Study. Eye (Lond). 2007;21:465–71.

    CAS  PubMed  Google Scholar 

  54. Aiello LP, Avery RL, Arrigg PG, Keyt BA, Jampel HD, Shah ST, et al. Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. N. Engl J Med. 1994;331:1480–7.

    CAS  PubMed  Google Scholar 

  55. Nguyen QD, Brown DM, Marcus DM, Boyer DS, Patel S, Feiner L, et al. Ranibizumab for diabetic macular oedema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 2012;119:789–801.

    PubMed  Google Scholar 

  56. Korobelnik J-F, Do DV, Schmidt-Erfurth U, Boyer DS, Holz FG, Heier JS, et al. Intravitreal aflibercept for diabetic macular oedema. Ophthalmology 2014;121:2247–54.

    PubMed  Google Scholar 

  57. Ashraf M, Shokrollahi S, Salongcay RP, Aiello LP, Silva PS. Diabetic retinopathy and ultrawide field imaging. Semin Ophthalmol. 2020;35:56–65.

    PubMed  Google Scholar 

  58. Wessel MM, Aaker GD, Parlitsis G, Cho M, D’Amico DJ, Kiss S. Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina 2012;32:785–91.

    PubMed  Google Scholar 

  59. Choudhry N, Duker JS, Freund KB, Kiss S, Querques G, Rosen R, et al. Classification and guidelines for widefield imaging: recommendations from the International Widefield Imaging Study Group. Ophthalmol Retin. 2019;3:843–9.

    Google Scholar 

  60. Silva PS, Cavallerano JD, Haddad NMN, Kwak H, Dyer KH, Omar AF, et al. Peripheral lesions identified on ultrawide field imaging predict increased risk of diabetic retinopathy progression over 4 years. Ophthalmology 2015;122:949–56.

    PubMed  Google Scholar 

  61. Rabbani H, Allingham MJ, Mettu PS, Cousins SW, Farsiu S. Fully automatic segmentation of fluorescein leakage in subjects with diabetic macular oedema. Invest Ophthalmol Vis Sci. 2015;56:1482–92.

    PubMed  PubMed Central  Google Scholar 

  62. Chandra S, Sheth J, Anantharaman G, Gopalakrishnan M. Ranibizumab-induced retinal reperfusion and regression of neovascularization in diabetic retinopathy: an angiographic illustration. Am J Ophthalmol Case Rep. 2018;9:41–4.

    PubMed  PubMed Central  Google Scholar 

  63. Levin AM, Rusu I, Orlin A, Gupta MP, Coombs P, D’Amico DJ, et al. Retinal reperfusion in diabetic retinopathy following treatment with anti-VEGF intravitreal injections. Clin Ophthalmol. 2017;11:193–200.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Reddy RK, Pieramici DJ, Gune S, Ghanekar A, Lu N, Quezada-Ruiz C, et al. Efficacy of ranibizumab in eyes with diabetic macular oedema and macular nonperfusion in RIDE and RISE. Ophthalmology 2018;125:1568–74.

    PubMed  Google Scholar 

  65. Campochiaro PA, Wykoff CC, Shapiro H, Rubio RG, Ehrlich JS. Neutralization of vascular endothelial growth factor slows progression of retinal nonperfusion in patients with diabetic macular oedema. Ophthalmology 2014;121:1783–9.

    PubMed  Google Scholar 

  66. Agemy SA, Scripsema NK, Shah CM, Chui T, Garcia PM, Lee JG, et al. Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 2015;35:2353–63.

    PubMed  Google Scholar 

  67. Matsunaga DR, Yi JJ, De Koo LO, Ameri H, Puliafito CA, Kashani AH. Optical coherence tomography angiography of diabetic retinopathy in human subjects. Ophthalmic Surg Lasers Imaging Retina 2015;46:796–805.

    PubMed  Google Scholar 

  68. Ishibazawa A, Nagaoka T, Takahashi A, Omae T, Tani T, Sogawa K, et al. Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol. 2015;160:35–44.

    PubMed  Google Scholar 

  69. Yang JY, Wang Q, Yan YN, Zhou WJ, Wang YX, Wu SL, et al. Microvascular retinal changes in pre-clinical diabetic retinopathy as detected by optical coherence tomographic angiography. Graefes Arch Clin Exp Ophthalmol. 2020;258:513–20.

    CAS  PubMed  Google Scholar 

  70. Russell JF, Shi Y, Hinkle JW, Scott NL, Fan KC, Lyu C, et al. Longitudinal wide-field swept-source OCT angiography of neovascularization in proliferative diabetic retinopathy after panretinal photocoagulation. Ophthalmol Retina. 2019;3:350–61.

    PubMed  Google Scholar 

  71. Garcia JMB, de B, Lima TT, Louzada RN, Rassi AT, Isaac DLC, et al. Diabetic macular ischaemia diagnosis: comparison between optical coherence tomography angiography and fluorescein angiography. J Ophthalmol. 2016;2016:3989310.

    PubMed  PubMed Central  Google Scholar 

  72. Russell JF, Flynn HW, Sridhar J, Townsend JH, Shi Y, Fan KC, et al. Distribution of diabetic neovascularization on ultra-widefield fluorescein angiography and on simulated widefield OCT angiography. Am J Ophthalmol. 2019;207:110–20.

    PubMed  Google Scholar 

  73. Couturier A, Rey P-A, Erginay A, Lavia C, Bonnin S, Dupas B, et al. Widefield OCT-angiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and oedema treated with anti-vascular endothelial growth factor. Ophthalmology 2019;126:1685–94.

    PubMed  Google Scholar 

  74. Or C, Sabrosa AS, Sorour O, Arya M, Waheed N Use of OCTA, FA, and ultra-widefield imaging in quantifying retinal ischaemia: a review. Asia Pac J Ophthalmol. 2018:7;46–51.

  75. Abràmoff MD, Lou Y, Erginay A, Clarida W, Amelon R, Folk JC, et al. Improved automated detection of diabetic retinopathy on a publicly available dataset through integration of deep learning. Invest Ophthalmol Vis Sci. 2016;57:5200–6.

    PubMed  Google Scholar 

  76. Gulshan V, Peng L, Coram M, Stumpe MC, Wu D, Narayanaswamy A, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 2016;316:2402–10.

    PubMed  Google Scholar 

  77. Alyoubi WL, Abulkhair MF, Shalash WM. Diabetic retinopathy fundus image classification and lesions localization system using deep learning. Sens (Basel). 2021;21:3704.

    Google Scholar 

  78. Ghasemi Falavarjani K, Wang K, Khadamy J, Sadda SR. Ultra-wide-field imaging in diabetic retinopathy; an overview. J Curr Ophthalmol. 2016;28:57–60.

    PubMed  PubMed Central  Google Scholar 

  79. Nderitu P, do Rio JMN, Rasheed R, Raman R, Rajalakshmi R, Bergeles C, et al. Deep learning for gradability classification of handheld, non-mydriatic retinal images. Sci Rep. 2021;11:9469.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Zheng Y, Kwong MT, Maccormick IJC, Beare NAV, Harding SP. A comprehensive texture segmentation framework for segmentation of capillary non-perfusion regions in fundus fluorescein angiograms. PLoS One. 2014;9:e93624.

    PubMed  PubMed Central  Google Scholar 

  81. Buchanan CR, Trucco E. Contextual detection of diabetic pathology in wide-field retinal angiograms. Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5437–40.

    PubMed  Google Scholar 

  82. Trucco E, Buchanan CR, Aslam T, Dhillon B. Contextual detection of ischemic regions in ultra-wide-field-of-view retinal fluorescein angiograms. Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:6740–3.

    CAS  PubMed  Google Scholar 

  83. Zhao Y, MacCormick IJC, Parry DG, Leach S, Beare NAV, Harding SP, et al. Automated detection of leakage in fluorescein angiography images with application to malarial retinopathy. Sci Rep. 2015;5:10425.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Jiang A, Srivastava S, Figueiredo N, Babiuch A, Hu M, Reese J, et al. Repeatability of automated leakage quantification and microaneurysm identification utilising an analysis platform for ultra-widefield fluorescein angiography. Br J Ophthalmol. 2020;104:500–3.

    PubMed  Google Scholar 

  85. Ehlers JP, Wang K, Vasanji A, Hu M, Srivastava SK. Automated quantitative characterisation of retinal vascular leakage and microaneurysms in ultra-widefield fluorescein angiography. Br J Ophthalmol. 2017;101:696–9.

    PubMed  Google Scholar 

  86. Ehlers JP, Jiang AC, Boss JD, Hu M, Figueiredo N, Babiuch A, et al. Quantitative ultra-widefield angiography and diabetic retinopathy severity: an assessment of panretinal leakage index, ischemic index and microaneurysm count. Ophthalmology 2019;126:1527–32.

    PubMed  Google Scholar 

  87. Sim DA, Keane PA, Rajendram R, Karampelas M, Selvam S, Powner MB, et al. Patterns of peripheral retinal and central macula ischaemia in diabetic retinopathy as evaluated by ultra-widefield fluorescein angiography. Am J Ophthalmol. 2014;158:144–53.

    PubMed  Google Scholar 

  88. Wessel MM, Nair N, Aaker GD, Ehrlich JR, D’Amico DJ, Kiss S. Peripheral retinal ischaemia, as evaluated by ultra-widefield fluorescein angiography, is associated with diabetic macular ooedema. Br J Ophthalmol. 2012;96:694–8.

    PubMed  Google Scholar 

  89. Nicholson L, Ramu J, Chan EW, Bainbridge JW, Hykin PG, Talks SJ, et al. Retinal nonperfusion characteristics on ultra-widefield angiography in eyes with severe nonproliferative diabetic retinopathy and proliferative diabetic retinopathy. JAMA Ophthalmol. 2019;137:626–31.

    PubMed  PubMed Central  Google Scholar 

  90. Wykoff CC, Nittala MG, Zhou B, Fan W, Velaga SB, Lampen SIR, et al. Intravitreal aflibercept for retinal nonperfusion in proliferative diabetic retinopathy: outcomes from the randomized RECOVERY Trial. Ophthalmol Retin. 2019;3:1076–86.

    Google Scholar 

  91. Rabiolo A, Parravano M, Querques L, Cicinelli MV, Carnevali A, Sacconi R, et al. Ultra-wide-field fluorescein angiography in diabetic retinopathy: a narrative review. Clin Ophthalmol. 2017;11:803–7.

    PubMed  PubMed Central  Google Scholar 

  92. Silva PS, Dela Cruz AJ, Ledesma MG, van Hemert J, Radwan A, Cavallerano JD, et al. Diabetic retinopathy severity and peripheral lesions are associated with nonperfusion on ultrawide field angiography. Ophthalmology 2015;122:2465–72.

    PubMed  Google Scholar 

  93. Figueiredo N, Srivastava SK, Singh RP, Babiuch A, Sharma S, Rachitskaya A, et al. Longitudinal panretinal leakage and ischemic indices in retinal vascular disease after aflibercept therapy: the PERMEATE Study. Ophthalmol Retin. 2020;4:154–63.

    Google Scholar 

  94. Bonnin S, Dupas B, Lavia C, Erginay A, Dhundass M, Couturier A, et al. Anti-vascular endothelial growth factor therapy can improve diabetic retinopathy score without change in retinal perfusion. Retina 2019;39:426–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  95. Diabetic Retinopathy Clinical Research Network, Elman MJ, Qin H, Aiello LP, Beck RW, Bressler NM, et al. Intravitreal ranibizumab for diabetic macular oedema with prompt versus deferred laser treatment: three-year randomized trial results. Ophthalmology. 2012;119:2312–8.

    Google Scholar 

  96. Liu Y, Shen J, Fortmann SD, Wang J, Vestweber D, Campochiaro PA. Reversible retinal vessel closure from VEGF-induced leukocyte plugging. JCI insight. 2017;2:e95530.

  97. Wykoff CC, Eichenbaum DA, Roth DB, Hill L, Fung AE, Haskova Z. Ranibizumab induces regression of diabetic retinopathy in most patients at high risk of progression to proliferative diabetic retinopathy. Ophthalmol Retin. 2018;2:997–1009.

    Google Scholar 

  98. Bressler SB, Liu D, Glassman AR, Blodi BA, Castellarin AA, Jampol LM, et al. Change in diabetic retinopathy through 2 years: secondary analysis of a randomized clinical trial comparing aflibercept, bevacizumab, and ranibizumab. JAMA Ophthalmol. 2017;135:558–68.

    PubMed  PubMed Central  Google Scholar 

  99. Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP, Beck RW, Bressler NM, Bressler SB, et al. Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular oedema. Ophthalmology 2010;117:1064–77.

    Google Scholar 

  100. Rajendram R, Fraser-Bell S, Kaines A, Michaelides M, Hamilton RD, Esposti SD, et al. A 2-year prospective randomized controlled trial of intravitreal bevacizumab or laser therapy (BOLT) in the management of diabetic macular oedema: 24-month data: report 3. Arch Ophthalmol (Chic, Ill 1960). 2012;130:972–9.

    CAS  Google Scholar 

  101. Brown DM, Nguyen QD, Marcus DM, Boyer DS, Patel S, Feiner L, et al. Long-term outcomes of ranibizumab therapy for diabetic macular oedema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology 2013;120:2013–22.

    PubMed  Google Scholar 

  102. Brown DM, Schmidt-Erfurth U, Do DV, Holz FG, Boyer DS, Midena E, et al. Intravitreal aflibercept for diabetic macular oedema: 100-week results from the VISTA and VIVID studies. Ophthalmology 2015;122:2044–52.

    PubMed  Google Scholar 

  103. Elman MJ, Bressler NM, Qin H, Beck RW, Ferris FL, Friedman SM, et al. Expanded 2-year follow-up of ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular oedema. Ophthalmology 2011;118:609–14.

    PubMed  Google Scholar 

  104. Bressler SB, Qin H, Melia M, Bressler NM, Beck RW, Chan CK, et al. Exploratory analysis of the effect of intravitreal ranibizumab or triamcinolone on worsening of diabetic retinopathy in a randomized clinical trial. JAMA Ophthalmol. 2013;131:1033–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ip MS, Domalpally A, Hopkins JJ, Wong P, Ehrlich JS. Long-term effects of ranibizumab on diabetic retinopathy severity and progression. Arch Ophthalmol. 2012;130:1145–52.

    CAS  PubMed  Google Scholar 

  106. Mitchell P, Bandello F, Schmidt-Erfurth U, Lang GE, Massin P, Schlingemann RO, et al. The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular oedema. Ophthalmology 2011;118:615–25.

    PubMed  Google Scholar 

  107. Heier JS, Korobelnik J-F, Brown DM, Schmidt-Erfurth U, Do DV, Midena E, et al. Intravitreal aflibercept for diabetic macular oedema: 148-week results from the VISTA and VIVID studies. Ophthalmology 2016;123:2376–85.

    PubMed  Google Scholar 

  108. Writing Committee for the Diabetic Retinopathy Clinical Research Network, Gross JG, Glassman AR, Jampol LM, Inusah S, Aiello LP, et al. Panretinal photocoagulation vs intravitreous ranibizumab for proliferative diabetic retinopathy: a randomized clinical trial. JAMA 2015;314:2137–46.

    Google Scholar 

  109. Bressler SB, Beaulieu WT, Glassman AR, Gross JG, Jampol LM, Melia M, et al. Factors associated with worsening proliferative diabetic retinopathy in eyes treated with panretinal photocoagulation or ranibizumab. Ophthalmology 2017;124:431–9.

    PubMed  Google Scholar 

  110. Diabetic Retinopathy Clinical Research Network*. Randomized clinical trial evaluating intravitreal ranibizumab or saline for vitreous haemorrhage from proliferative diabetic retinopathy. JAMA Ophthalmol 2013;131:283–93.

    PubMed Central  Google Scholar 

  111. Sivaprasad S, Prevost AT, Vasconcelos JC, Riddell A, Murphy C, Kelly J, et al. Clinical efficacy of intravitreal aflibercept versus panretinal photocoagulation for best corrected visual acuity in patients with proliferative diabetic retinopathy at 52 weeks (CLARITY): a multicentre, single-blinded, randomised, controlled, phase 2b, non-inferiority trial. Lancet. 2017;389:2193–203.

    CAS  PubMed  Google Scholar 

  112. Halim S, Nugawela M, Chakravarthy U, Peto T, Madhusudhan S, Lenfestey P, et al. Topographical response of retinal neovascularization to aflibercept or panretinal photocoagulation in proliferative diabetic retinopathy: post hoc analysis of the CLARITY Randomized Clinical Trial. JAMA Ophthalmol. 2021;139:501–7.

    PubMed  Google Scholar 

  113. Figueira J, Fletcher E, Massin P, Silva R, Bandello F, Midena E, et al. EVICR.net Study Group. Ranibizumab plus panretinal photocoagulation versus panretinal photocoagulation alone for high-risk proliferative diabetic retinopathy (PROTEUS Study). Ophthalmology. 2018;125:691–700.

    PubMed  Google Scholar 

  114. Lang GE, Stahl A, Voegeler J, Quiering C, Lorenz K, Spital G, et al. Efficacy and safety of ranibizumab with or without panretinal laser photocoagulation versus laser photocoagulation alone in proliferative diabetic retinopathy - the PRIDE study. Acta Ophthalmol. 2019; https://doi.org/10.1111/aos.14312.

  115. Maturi RK, Glassman AR, Josic K, Antoszyk AN, Blodi BA, Jampol LM, et al. Effect of intravitreous anti-vascular endothelial growth factor vs sham treatment for prevention of vision-threatening complications of diabetic retinopathy: the protocol W randomized clinical trial. JAMA Ophthalmol. 2021;139:701–12.

    PubMed  PubMed Central  Google Scholar 

  116. Brown DM, Wykoff CC, Boyer D, Heier JS, Clark WL, Emanuelli A, et al. Evaluation of intravitreal aflibercept for the treatment of severe nonproliferative diabetic retinopathy: results from the PANORAMA randomized clinical trial. JAMA Ophthalmol. 2021;139:946–55.

    PubMed  Google Scholar 

  117. Sen S, Ramasamy K, Sivaprasad S. Indicators of visual prognosis in diabetic macular ooedema. J Pers Med. 2021;11:449.

  118. Cheung CMG, Fawzi A, Teo KY, Fukuyama H, Sen S, Tsai W-S, et al. Diabetic macular ischaemia- a new therapeutic target? Prog Retin Eye Res. 2022;89:101033.

  119. Dhoot DS, Baker K, Saroj N, Vitti R, Berliner AJ, Metzig C, et al. Baseline factors affecting changes in diabetic retinopathy severity scale score after intravitreal aflibercept or laser for diabetic macular oedema: post hoc analyses from VISTA and VIVID. Ophthalmology 2018;125:51–6.

    PubMed  Google Scholar 

  120. Tadayoni R. Time to call into question the fundus-based evaluation of diabetic retinopathy after intravitreal injections. J Ophthalmic Vis Res. 2020;15:4–6.

  121. Singer M, Liu M, Schlottmann PG, Khanani AM, Hemphill M, Hill L, et al. Predictors of early diabetic retinopathy regression with ranibizumab in the RIDE and RISE clinical trials. Clin Ophthalmol. 2020;14:1629–39.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Williamson L, Starnes D, Taylor C, Levy R, Kasetty V, Rex P, et al. Wide-field fluorescein angiographic-guided aflibercept (WFFAGA) monotherapy for proliferative diabetic retinopathy (PDR). Invest Ophthalmol Vis Sci. 2019;60:5334.

    Google Scholar 

  123. Talks SJ, Manjunath V, Steel DHW, Peto T, Taylor R. New vessels detected on wide-field imaging compared to two-field and seven-field imaging: implications for diabetic retinopathy screening image analysis. Br J Ophthalmol. 2015;99:1606–9.

    PubMed  Google Scholar 

  124. Heier JS, Singh RP, Wykoff CC, Csaky KG, Lai TYY, Loewenstein A, et al. The angiopoietin/tie pathway in retinal vascular diseases: a review. Retina. 2021;41:1–19.

    CAS  PubMed  Google Scholar 

  125. Wykoff CC, Abreu F, Adamis AP, Basu K, Eichenbaum DA, Haskova Z, et al. YOSEMITE and RHINE Investigators. Efficacy, durability, and safety of intravitreal faricimab with extended dosing up to every 16 weeks in patients with diabetic macular oedema (YOSEMITE and RHINE): two randomised, double-masked, phase 3 trials. Lancet 2022;399:741–55.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This manuscript was prepared for the European Vision Institute.

Funding

SS and SSen are funded by UKRI Global Challenge Research Fund [MR/P027881/1]. SS is supported by the NIHR Biomedical Research Centre at Moorfields Eye Hospital National Health Service (NHS) Foundation Trust and the University College London Institute of Ophthalmology. José Cunha-Vaz is funded by AIBILI and Fundo de Inovação Tecnologia e Economia Circular (FITEC)—Programa Interface (FITEC/CIT/2018/2).

Author information

Authors and Affiliations

Authors

Contributions

SS, SSen and JCV – concept, writing, proofing

Corresponding author

Correspondence to Sobha Sivaprasad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaprasad, S., Sen, S. & Cunha-Vaz, J. Perspectives of diabetic retinopathy—challenges and opportunities. Eye 37, 2183–2191 (2023). https://doi.org/10.1038/s41433-022-02335-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-022-02335-5

This article is cited by

Search

Quick links