Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Proteomic analysis of vitreal exosomes in patients with proliferative diabetic retinopathy

Abstract

Purpose

To determine the proteomic profiles of exosomes derived from vitreous humour (VH) obtained from proliferative diabetic retinopathy (PDR) patients and non-diabetic controls with idiopathic macular hole/epiretinal membrane.

Methods

Vitreal exosomes were isolated using differential ultracentrifugation, followed by characterisation performed using different techniques. A label-free proteomic analysis was conducted to determine the protein profiles of the exosomes. A parallel reaction monitoring (PRM) analysis was performed to verify the identified proteins and associated functional annotations were derived by gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. Receiver operating characteristic (ROC) analysis was utilised to evaluate the diagnostic value of target proteins in distinguishing PDR from controls.

Results

Exosomes were successfully isolated from VH, and were well characterised by various techniques. The results of proteomic analysis showed that a total of 758 proteins were identified and 10 proteins were screened as differentially expressed proteins, significantly changed in the PDR group containing 4 elevated proteins and 6 reduced proteins. GO analysis indicated that these differential proteins were mainly involved in many metabolic pathways, including nicotinamide adenine dinucleotide metabolism, adenosine diphosphate metabolic process and glycolytic process. The KEGG analysis enriched the top five pathways including glycolysis/gluconeogenesis, fructose and mannose metabolism, biosynthesis of amino acids, hypoxia-inducible factor 1 signalling pathway and carbon metabolism. The differential proteins, namely, lactate dehydrogenase A, ficolin 3, apolipoprotein B and apolipoprotein M, were further verified by PRM and showed a consistent trend with label-free proteomic analysis. The ROC analysis identified these proteins as promising biomarkers for PDR diagnosis.

Conclusions

Vitreal exosomes from patients with PDR contained few proteins unique to PDR; thus, exosomal proteins have great potential as disease biomarkers and therapeutic targets for PDR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An overview of the experimental design.
Fig. 2: Characterisation of isolated vitreous exosomes across groups.
Fig. 3: Hierarchical cluster and volcano plots of the differentially expressed proteins.
Fig. 4: Parallel reaction monitoring (PRM) analysis of the differentially expressed exosome proteins.

Similar content being viewed by others

Data availability

The data that support the findings of this study are not publicly available because they contain information that could compromise the privacy of patients but are available from the corresponding author upon reasonable request.

References

  1. Cheung N, Mitchell P, Wong TY. Diabetic retinopathy. Lancet. 2010;376:124–36.

    Article  PubMed  Google Scholar 

  2. Kollias AN, Ulbig MW. Diabetic retinopathy: early diagnosis and effective treatment. Dtsch Arztebl Int. 2010;107:75–83. quiz 84

    PubMed  PubMed Central  Google Scholar 

  3. El Rami H, Barham R, Sun JK, Silva PS. Evidence-based treatment of diabetic retinopathy. Semin Ophthalmol. 2017;32:67–74.

    Article  PubMed  Google Scholar 

  4. Nawaz IM, Rezzola S, Cancarini A, Russo A, Costagliola C, Semeraro F, et al. Human vitreous in proliferative diabetic retinopathy: characterization and translational implications. Prog Retin Eye Res. 2019;72:100756.

    Article  CAS  PubMed  Google Scholar 

  5. Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomed. 2020;15:6917–34.

    Article  CAS  Google Scholar 

  6. Hervera A, De Virgiliis F, Palmisano I, Zhou L, Tantardini E, Kong G, et al. Reactive oxygen species regulate axonal regeneration through the release of exosomal NADPH oxidase 2 complexes into injured axons. Nat Cell Biol. 2018;20:307–19.

    Article  CAS  PubMed  Google Scholar 

  7. Willis GR, Fernandez-Gonzalez A, Anastas J, Vitali SH, Liu X, Ericsson M, et al. Mesenchymal stromal cell exosomes ameliorate experimental bronchopulmonary dysplasia and restore lung function through macrophage immunomodulation. Am J Respir Crit Care Med. 2018;197:104–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jin C, Wu P, Li L, Xu W, Qian H. Exosomes: emerging therapy delivery tools and biomarkers for kidney diseases. Stem Cells Int. 2021;2021:7844455.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Klingeborn M, Dismuke WM, Bowes Rickman C, Stamer WD. Roles of exosomes in the normal and diseased eye. Prog Retin Eye Res. 2017;59:158–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kang GY, Bang JY, Choi AJ, Yoon J, Lee WC, Choi S, et al. Exosomal proteins in the aqueous humor as novel biomarkers in patients with neovascular age-related macular degeneration. J Proteome Res. 2014;13:581–95.

    Article  CAS  PubMed  Google Scholar 

  11. Takahashi E, Saruwatari J, Fujimoto T, Tanoue Y, Fukuda T, Inoue T. The effects of exosomes derived from trabecular meshwork cells on Schlemm’s canal endothelial cells. Sci Rep. 2021;11:21942.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Moisseiev E, Anderson JD, Oltjen S, Goswami M, Zawadzki RJ, Nolta JA, et al. Protective effect of intravitreal administration of exosomes derived from mesenchymal stem cells on retinal ischemia. Curr Eye Res. 2017;42:1358–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Huang C, Fisher KP, Hammer SS, Navitskaya S, Blanchard GJ, Busik JV. Plasma exosomes contribute to microvascular damage in diabetic retinopathy by activating the classical complement pathway. Diabetes. 2018;67:1639–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang W, Wang Y, Kong Y. Exosomes derived from mesenchymal stem cells modulate miR-126 to ameliorate hyperglycemia-induced retinal inflammation via targeting HMGB1. Invest Ophthalmol Vis Sci. 2019;60:294–303.

    Article  CAS  PubMed  Google Scholar 

  15. Maisto R, Trotta MC, Petrillo F, Izzo S, Cuomo G, Alfano R, et al. Resolvin D1 modulates the intracellular VEGF-related miRNAs of retinal photoreceptors challenged with high glucose. Front Pharm. 2020;11:235.

    Article  CAS  Google Scholar 

  16. Zhang W, Dong X, Wang T, Kong Y. Exosomes derived from platelet-rich plasma mediate hyperglycemia-induced retinal endothelial injury via targeting the TLR4 signaling pathway. Exp Eye Res. 2019;189:107813.

    Article  CAS  PubMed  Google Scholar 

  17. Kamalden TA, Macgregor-Das AM, Kannan SM, Dunkerly-Eyring B, Khaliddin N, Xu Z, et al. Exosomal microRNA-15a transfer from the pancreas augments diabetic complications by inducing oxidative stress. Antioxid Redox Signal. 2017;27:913–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Katome T, Namekata K, Mitamura Y, Semba K, Egawa M, Naito T, et al. Expression of intraocular peroxisome proliferator-activated receptor gamma in patients with proliferative diabetic retinopathy. J Diabetes Complications. 2015;29:275–81.

    Article  PubMed  Google Scholar 

  19. Tokarz A, Szuścik I, Kuśnierz-Cabala B, Kapusta M, Konkolewska M, Żurakowski A, et al. Extracellular vesicles participate in the transport of cytokines and angiogenic factors in diabetic patients with ocular complications. Folia Med Cracov. 2015;55:35–48.

    PubMed  Google Scholar 

  20. Ragusa M, Barbagallo C, Statello L, Caltabiano R, Russo A, Puzzo L, et al. miRNA profiling in vitreous humor, vitreal exosomes and serum from uveal melanoma patients: Pathological and diagnostic implications. Cancer Biol Ther. 2015;16:1387–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ménard C, Rezende FA, Miloudi K, Wilson A, Tétreault N, Hardy P, et al. MicroRNA signatures in vitreous humour and plasma of patients with exudative AMD. Oncotarget. 2016;7:19171–84.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu Y, Yang Q, Fu H, Wang J, Yuan S, Li X, et al. Müller glia-derived exosomal miR-9-3p promotes angiogenesis by restricting sphingosine-1-phosphate receptor S1P1 in diabetic retinopathy. Mol Ther Nucleic Acids. 2022;27:491–504.

    Article  CAS  PubMed  Google Scholar 

  23. Théry C, Amigorena S, Raposo G, Clayton A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. 2006;Chapter 3:Unit 3.22.

  24. Lande K, Gupta J, Ranjan R, Kiran M, Torres Solis LF, Solís Herrera A, et al. Exosomes: insights from retinoblastoma and other eye cancers. Int J Mol Sci. 2020;21:7055.

  25. Chen A, Wang H, Su Y, Zhang C, Qiu Y, Zhou Y, et al. Exosomes: biomarkers and therapeutic targets of diabetic vascular complications. Front Endocrinol (Lausanne). 2021;12:720466.

    Article  PubMed  Google Scholar 

  26. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteom. 2010;73:1907–20.

    Article  CAS  Google Scholar 

  27. Hajrasouliha AR, Jiang G, Lu Q, Lu H, Kaplan HJ, Zhang HG, et al. Exosomes from retinal astrocytes contain antiangiogenic components that inhibit laser-induced choroidal neovascularization. J Biol Chem. 2013;288:28058–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chait A, Montes VN. Apolipoproteins and diabetic retinopathy. Diabetes Care. 2011;34:529–31.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Chung JO, Park SY, Cho DH, Chung DJ, Chung MY. Associations between serum apolipoproteins, urinary albumin excretion rate, estimated glomerular filtration rate, and diabetic retinopathy in individuals with type 2 diabetes. Medicine (Baltimore). 2019;98:e15703.

    Article  PubMed  Google Scholar 

  30. Moosaie F, Davatgari RM, Firouzabadi FD, Esteghamati S, Deravi N, Meysamie A, et al. Lipoprotein(a) and apolipoproteins as predictors for diabetic retinopathy and its severity in adults with type 2 diabetes: a case-cohort study. Can J Diabetes. 2020;44:414–21.

    Article  PubMed  Google Scholar 

  31. Simó R, García-Ramírez M, Higuera M, Hernández C. Apolipoprotein A1 is overexpressed in the retina of diabetic patients. Am J Ophthalmol. 2009;147:319–25.e1.

    Article  PubMed  Google Scholar 

  32. Simó R, Higuera M, García-Ramírez M, Canals F, García-Arumí J, Hernández C. Elevation of apolipoprotein A-I and apolipoprotein H levels in the vitreous fluid and overexpression in the retina of diabetic patients. Arch Ophthalmol. 2008;126:1076–81.

    Article  PubMed  Google Scholar 

  33. Karimi N, Cvjetkovic A, Jang SC, Crescitelli R, Hosseinpour Feizi MA, Nieuwland R, et al. Detailed analysis of the plasma extracellular vesicle proteome after separation from lipoproteins. Cell Mol Life Sci. 2018;75:2873–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 2018;7:1535750.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wu M, Chen Y, Wilson K, Chirindel A, Ihnat MA, Yu Y, et al. Intraretinal leakage and oxidation of LDL in diabetic retinopathy. Invest Ophthalmol Vis Sci. 2008;49:2679–85.

    Article  PubMed  Google Scholar 

  36. Crosby-Nwaobi R, Chatziralli I, Sergentanis T, Dew T, Forbes A, Sivaprasad S. Cross talk between lipid metabolism and inflammatory markers in patients with diabetic retinopathy. J Diabetes Res. 2015;2015:191382.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Arkensteijn BW, Berbée JF, Rensen PC, Nielsen LB, Christoffersen C. The apolipoprotein m-sphingosine-1-phosphate axis: biological relevance in lipoprotein metabolism, lipid disorders and atherosclerosis. Int J Mol Sci. 2013;14:4419–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Blaho VA, Galvani S, Engelbrecht E, Liu C, Swendeman SL, Kono M, et al. HDL-bound sphingosine-1-phosphate restrains lymphopoiesis and neuroinflammation. Nature. 2015;523:342–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Plomgaard P, Dullaart RP, de Vries R, Groen AK, Dahlbäck B, Nielsen LB. Apolipoprotein M predicts pre-beta-HDL formation: studies in type 2 diabetic and nondiabetic subjects. J Intern Med. 2009;266:258–67.

    Article  CAS  PubMed  Google Scholar 

  40. Xu N, Nilsson-Ehle P, Hurtig M, Ahrén B. Both leptin and leptin-receptor are essential for apolipoprotein M expression in vivo. Biochem Biophys Res Commun. 2004;321:916–21.

    Article  CAS  PubMed  Google Scholar 

  41. Cervin C, Axler O, Holmkvist J, Almgren P, Rantala E, Tuomi T, et al. An investigation of serum concentration of apoM as a potential MODY3 marker using a novel ELISA. J Intern Med. 2010;267:316–21.

    Article  CAS  PubMed  Google Scholar 

  42. Chen H, Lu J, Chen X, Yu H, Zhang L, Bao Y, et al. Low serum levels of the innate immune component ficolin-3 is associated with insulin resistance and predicts the development of type 2 diabetes. J Mol Cell Biol. 2012;4:256–7.

    Article  CAS  PubMed  Google Scholar 

  43. Zhang X, Hu Y, Shen J, Zeng H, Lu J, Li L, et al. Low levels of ficolin-3 are associated with diabetic peripheral neuropathy. Acta Diabetol. 2016;53:295–302.

    Article  CAS  PubMed  Google Scholar 

  44. Gomaa MH, Khidr EG, Elshafei A, Hamza HS, Fattouh AM, El-Husseiny AA, et al. The clinical value of ficolin-3 gene polymorphism in rheumatic heart disease. An Egyptian adolescents study. BMC Res Notes. 2021;14:36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Schlapbach LJ, Aebi C, Hansen AG, Hirt A, Jensenius JC, Ammann RA. H-ficolin serum concentration and susceptibility to fever and neutropenia in paediatric cancer patients. Clin Exp Immunol. 2009;157:83–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Andrade FA, Beltrame MH, Bini VB, Gonçalves LB, Boldt AB, de Messias-Reason IJ. Association of a new FCN3 haplotype with high ficolin-3 levels in leprosy. PLoS Negl Trop Dis. 2017;11:e0005409.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Andersen T, Munthe-Fog L, Garred P, Jacobsen S. Serum levels of ficolin-3 (Hakata antigen) in patients with systemic lupus erythematosus. J Rheumatol. 2009;36:757–9.

    Article  CAS  PubMed  Google Scholar 

  48. Zheng B, Li T, Chen H, Xu X, Zheng Z. Correlation between ficolin-3 and vascular endothelial growth factor-to-pigment epithelium-derived factor ratio in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol. 2011;152:1039–43.

    Article  CAS  PubMed  Google Scholar 

  49. Jin L, Chun J, Pan C, Alesi GN, Li D, Magliocca KR, et al. Phosphorylation-mediated activation of LDHA promotes cancer cell invasion and tumour metastasis. Oncogene. 2017;36:3797–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sanchez P, Khazaei M, Gatineau E, Geravandi S, Lupse B, Liu H, et al. LDHA is enriched in human islet alpha cells and upregulated in type 2 diabetes. Biochem Biophys Res Commun. 2021;568:158–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li M, Wang S, Liu X, Sheng Z, Li B, Li J, et al. Cadmium exposure decreases fasting blood glucose levels and exacerbates type-2 diabetes in a mouse model. Endocrine. 2022;76:53–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Jinan Clinical Medical Science and Technology Innovation Plan (202019113), Key Research and Development project of Shandong Province (2017GSF218033) and the National Natural Science Foundation of China (81700831).

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived of and designed the experimental protocol. JWW, ZZW and YZ collected the data. JWW and ZZW were involved in the analysis and interpretation of the data. JWW wrote the first draft of the manuscript. JQL reviewed and revised the manuscript and produced the final version. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jianqiao Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Wang, Z., Zhang, Y. et al. Proteomic analysis of vitreal exosomes in patients with proliferative diabetic retinopathy. Eye 37, 2061–2068 (2023). https://doi.org/10.1038/s41433-022-02286-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-022-02286-x

This article is cited by

Search

Quick links