Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Association between atrial fibrillation and the risk of glaucoma development: a 12-year Nationwide cohort study

Abstract

Objective

To investigate the risk of glaucoma development in patients with atrial fibrillation (A-fib) using Korean National Health Insurance Service data.

Methods

The present study used a National Sample Cohort consisting of approximately one million random subjects who were tracked from 2002 to 2013 (12 years). Newly diagnosed glaucoma and A-fib were included based on the Korean Classification of Disease codes. The A-fib group consisted of patients who received an initial A-fib diagnosis between January 2003 and December 2007 as an index period (n = 8765). The control group (n = 43,352) was selected using a 1:5 propensity-score matching for social and demographic factors. Each subject was followed up until 2013. Multivariate Cox proportional hazard regression analysis was performed to compare the risk of glaucoma development between the A-fib group and the control group.

Results

The rate of glaucoma development was 3.54% in the A-fib group and 2.96% in the control group (P < 0.0001). A-fib increased the risk of glaucoma development [hazard ratio = 1.31; 95% confidence interval (CI): 1.15 to 1.48] after adjusting for age, sex, comorbidities, residence, household income, and year of enrollment. In multivariable Cox regression analysis, patients with comorbidity of diabetes mellitus and chronic renal failure and those aged ≥50 years showed significantly higher risk of glaucoma development (all P < 0.001).

Conclusions

A-fib was significantly associated with the development of glaucoma after adjusting for potential confounding factors. Physicians may need to monitor patients with A-fib carefully for possible glaucoma development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Diagram of the longitudinal cohort study.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. Flaxman SR, Bourne RRA, Resnikoff S, Ackland P, Braithwaite T, Cicinelli MV, et al. Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. Lancet Glob Health. 2017;5:e1221–e34.

    Article  PubMed  Google Scholar 

  2. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363:1711–20.

    Article  PubMed  Google Scholar 

  3. Flammer J, Mozaffarieh M. What is the present pathogenetic concept of glaucomatous optic neuropathy? Surv Ophthalmol. 2007;52:S162–73.

    Article  PubMed  Google Scholar 

  4. Rudnicka AR, Mt-Isa S, Owen CG, Cook DG, Ashby D. Variations in primary open-angle glaucoma prevalence by age, gender, and race: a Bayesian meta-analysis. Invest Ophthalmol Vis Sci. 2006;47:4254–61.

    Article  PubMed  Google Scholar 

  5. Wolfs RC, Borger PH, Ramrattan RS, Klaver CC, Hulsman CA, Hofman A, et al. Changing views on open-angle glaucoma: definitions and prevalences–The Rotterdam Study. Invest Ophthalmol Vis Sci. 2000;41:3309–21.

    CAS  PubMed  Google Scholar 

  6. Flammer J. Glaucomatous optic neuropathy: a reperfusion injury. Klin Monbl Augenheilkd. 2001;218:290–1.

    Article  CAS  PubMed  Google Scholar 

  7. Bossuyt J, Vandekerckhove G, De Backer TL, Van de Velde S, Azermai M, Stevens AM, et al. Vascular dysregulation in normal-tension glaucoma is not affected by structure and function of the microcirculation or macrocirculation at rest: a case-control study. Med (Baltim). 2015;94:e425.

    Article  Google Scholar 

  8. Bowe A, Grunig M, Schubert J, Demir M, Hoffmann V, Kutting F, et al. Circadian variation in arterial blood pressure and glaucomatous optic neuropathy–A systematic review and meta-analysis. Am J Hypertens. 2015;28:1077–82.

    Article  PubMed  Google Scholar 

  9. Broadway DC, Drance SM. Glaucoma and vasospasm. Br J Ophthalmol. 1998;82:862–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Graham SL, Drance SM. Nocturnal hypotension: role in glaucoma progression. Surv Ophthalmol. 1999;43:S10–6.

    Article  PubMed  Google Scholar 

  11. Hayreh SS. The role of age and cardiovascular disease in glaucomatous optic neuropathy. Surv Ophthalmol. 1999;43:S27–42.

    Article  PubMed  Google Scholar 

  12. Hayreh SS, Podhajsky P, Zimmerman MB. Role of nocturnal arterial hypotension in optic nerve head ischemic disorders. Ophthalmologica. 1999;213:76–96.

    Article  CAS  PubMed  Google Scholar 

  13. Koch EC, Staab J, Fuest M, Witt K, Voss A, Plange N. Blood pressure and heart rate variability to detect vascular dysregulation in glaucoma. J Ophthalmol. 2015;2015:798958.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Wierzbowska J, Wierzbowski R, Stankiewicz A, Siesky B, Harris A. Cardiac autonomic dysfunction in patients with normal tension glaucoma: 24-h heart rate and blood pressure variability analysis. Br J Ophthalmol. 2012;96:624–8.

    Article  PubMed  Google Scholar 

  15. Flammer J, Orgul S, Costa VP, Orzalesi N, Krieglstein GK, Serra LM, et al. The impact of ocular blood flow in glaucoma. Prog Retin Eye Res. 2002;21:359–93.

    Article  PubMed  Google Scholar 

  16. Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation: a Global Burden of Disease 2010 Study. Circulation. 2014;129:837–47.

    Article  PubMed  Google Scholar 

  17. Chun YS, Sung KR, Park CK, Kim HK, Yoo C, Kim YY, et al. Vision-related quality of life according to location of visual field loss in patients with glaucoma. Acta Ophthalmol. 2019;97:e772–e9.

    PubMed  Google Scholar 

  18. Szegedi S, Boltz A, Scharinger EM, Vecsei-Marlovits PV. Quality of life in patients with glaucoma assessed by 39-item National Eye Institute Visual Functioning Questionnaire (NEI VFQ-39). Graefes Arch Clin Exp Ophthalmol. 2022;260:1623–31.

  19. Rasendran C, Li A, Singh RP. Incremental health care expenditures associated with glaucoma in the United States: A propensity score-matched analysis. J Glaucoma. 2022;31:1–7.

    Article  PubMed  Google Scholar 

  20. Jung Y, Han K, Park HL, Park CK. Type 2 diabetes mellitus and risk of open-angle glaucoma development in Koreans: An 11-year nationwide propensity-score-matched study. Diabetes Metab. 2018;44:328–32.

    Article  CAS  PubMed  Google Scholar 

  21. Rim TH, Lee SY, Bae HW, Seong GJ, Kim SS, Kim CY. Increased risk of open-angle glaucoma among patients with diabetes mellitus: a 10-year follow-up nationwide cohort study. Acta Ophthalmol. 2018;96:e1025–e30.

    Article  CAS  PubMed  Google Scholar 

  22. Rim TH, Lee SY, Kim SH, Kim SS, Kim CY. Increased incidence of open-angle glaucoma among hypertensive patients: an 11-year nationwide retrospective cohort study. J Hypertens. 2017;35:729–36.

    Article  CAS  PubMed  Google Scholar 

  23. Cheol Seong S, Kim YY, Khang YH, Heon Park J, Kang HJ, Lee H. et al. Data resource profile: the national health information database of the National Health Insurance Service in South Korea. Int J Epidemiol. 2017;46:799–800.

    PubMed  Google Scholar 

  24. Lee KS, Nam KH, Kim DW, Kang EC, Koh HJ. Risk of retinal vein occlusion in patients with end-stage renal disease: a 12-year, retrospective, Nationwide Cohort Study in South Korea. Invest Ophthalmol Vis Sci. 2018;59:39–44.

    Article  CAS  PubMed  Google Scholar 

  25. Al-Saady NM, Obel OA, Camm AJ. Left atrial appendage: structure, function, and role in thromboembolism. Heart. 1999;82:547–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hayreh SS, Podhajsky PA, Zimmerman MB. Retinal artery occlusion: associated systemic and ophthalmic abnormalities. Ophthalmology. 2009;116:1928–36.

    Article  PubMed  Google Scholar 

  27. Yen JC, Lin HL, Hsu CA, Li YC, Hsu MH. Atrial fibrillation and coronary artery disease as risk factors of retinal artery occlusion: a nationwide population-based study. Biomed Res Int. 2015;2015:374616.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zaleska-Zmijewska A, Janiszewski M, Wawrzyniak ZM, Kuch M, Szaflik J, Szaflik JP. Is atrial fibrillation a risk factor for normal-tension glaucoma? Med (Baltim). 2017;96:e8347.

    Article  Google Scholar 

  29. Flammer J, Konieczka K, Flammer AJ. The primary vascular dysregulation syndrome: implications for eye diseases. EPMA J. 2013;4:14.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Park HY, Park SH, Park CK. Central visual field progression in normal-tension glaucoma patients with autonomic dysfunction. Invest Ophthalmol Vis Sci. 2014;55:2557–63.

    Article  PubMed  Google Scholar 

  31. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, Varotto A. Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt Study. Ophthalmology. 2000;107:1287–93.

    Article  CAS  PubMed  Google Scholar 

  32. Ekstrom C. Risk factors for incident open-angle glaucoma: a population-based 20-year follow-up study. Acta Ophthalmol. 2012;90:316–21.

    Article  PubMed  Google Scholar 

  33. Leske MC, Wu SY, Hennis A, Honkanen R, Nemesure B, Group BES. Risk factors for incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology. 2008;115:85–93.

    Article  PubMed  Google Scholar 

  34. Choi J, Jeong J, Cho HS, Kook MS. Effect of nocturnal blood pressure reduction on circadian fluctuation of mean ocular perfusion pressure: a risk factor for normal tension glaucoma. Invest Ophthalmol Vis Sci. 2006;47:831–6.

    Article  PubMed  Google Scholar 

  35. Choi J, Kim KH, Jeong J, Cho HS, Lee CH, Kook MS. Circadian fluctuation of mean ocular perfusion pressure is a consistent risk factor for normal-tension glaucoma. Invest Ophthalmol Vis Sci. 2007;48:104–11.

    Article  PubMed  Google Scholar 

  36. Na KS, Lee NY, Park SH, Park CK. Autonomic dysfunction in normal tension glaucoma: the short-term heart rate variability analysis. J Glaucoma. 2010;19:377–81.

    Article  PubMed  Google Scholar 

  37. Park HY, Jung KI, Na KS, Park SH, Park CK. Visual field characteristics in normal-tension glaucoma patients with autonomic dysfunction and abnormal peripheral microcirculation. Am J Ophthalmol. 2012;154:466–75.e1.

    Article  PubMed  Google Scholar 

  38. Riccadonna M, Covi G, Pancera P, Presciuttini B, Babighian S, Perfetti S, et al. Autonomic system activity and 24-hour blood pressure variations in subjects with normal- and high-tension glaucoma. J Glaucoma. 2003;12:156–63.

    Article  PubMed  Google Scholar 

  39. Sung KR, Cho JW, Lee S, Yun SC, Choi J, Na JH, et al. Characteristics of visual field progression in medically treated normal-tension glaucoma patients with unstable ocular perfusion pressure. Invest Ophthalmol Vis Sci. 2011;52:737–43.

    Article  PubMed  Google Scholar 

  40. Perasalo R, Perasalo J, Raitta C. Electrocardiographic changes in institutionalized geriatric glaucoma patients. Graefes Arch Clin Exp Ophthalmol. 1992;230:213–7.

    Article  CAS  PubMed  Google Scholar 

  41. Perasalo R, Raitta C, Perasalo J. Optic nerve fiber loss in relation to atrial fibrillation and blood pressure. Int Ophthalmol. 1992;16:259–63.

    Article  CAS  PubMed  Google Scholar 

  42. Lopes de Faria JM, Russ H, Costa VP. Retinal nerve fibre layer loss in patients with type 1 diabetes mellitus without retinopathy. Br J Ophthalmol. 2002;86:725–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Amano S, Kaji Y, Oshika T, Oka T, Machinami R, Nagai R, et al. Advanced glycation end products in human optic nerve head. Br J Ophthalmol. 2001;85:52–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang L, Inoue M, Dong K, Yamamoto M. Alterations in retrograde axonal transport in optic nerve of type I and type II diabetic rats. Kobe J Med Sci. 1998;44:205–15.

    CAS  PubMed  Google Scholar 

  45. Szaflik JP, Rusin P, Zaleska-Zmijewska A, Kowalski M, Majsterek I, Szaflik J. Reactive oxygen species promote localized DNA damage in glaucoma-iris tissues of elderly patients vulnerable to diabetic injury. Mutat Res. 2010;697:19–23.

    Article  CAS  PubMed  Google Scholar 

  46. Zafar S, Staggers KA, Gao J, Liu Y, Patel PJ, Foster PJ, et al. Evaluation of retinal nerve fibre layer thickness as a possible measure of diabetic retinal neurodegeneration in the EPIC-Norfolk Eye Study. Br J Ophthalmol. 2021;24:bjophthalmol-2021-319853.

  47. Cho HK, Han JC, Choi JA, Chae JE, Kim RB. Association between chronic renal disease and the risk of glaucoma development: a 12-year nationwide cohort study. Invest Ophthalmol Vis Sci. 2021;62:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Shim SH, Sung KC, Kim JM, Lee MY, Won YS, Kim JH, et al. Association between Renal Function and Open-Angle Glaucoma: The Korea National Health and Nutrition Examination Survey 2010–2011. Ophthalmology. 2016;123:1981–8.

    Article  PubMed  Google Scholar 

  49. Cho HK, Kee C. Population-based glaucoma prevalence studies in Asians. Surv Ophthalmol. 2014;59:434–47.

    Article  PubMed  Google Scholar 

  50. Choi S, Choi JA, Kwon JW, Park SM, Jee D. Patterns of care for glaucoma patients in Korea from 2002 to 2013 using the national health insurance service claims data. Med (Baltim). 2018;97:e12357.

    Article  Google Scholar 

  51. Park HL, Jung Y, Han K, Lee MY, Park CK. Health care claims for primary open-angle glaucoma and retinal vein occlusion from an 11-year nationwide dataset. Sci Rep. 2017;7:8038.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Rim TH, Lee SY, Bae HW, Kim SS, Kim CY. Increased stroke risk among patients with open-angle glaucoma: a 10-year follow-up cohort study. Br J Ophthalmol. 2018;102:338–43.

    Article  PubMed  Google Scholar 

  53. Sung H, Shin HH, Baek Y, Kim GA, Koh JS, Park EC, et al. The association between socioeconomic status and visual impairments among primary glaucoma: the results from Nationwide Korean National Health Insurance Cohort from 2004 to 2013. BMC Ophthalmol. 2017;17:153.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by a grant (No. 2019R1G1A1007020) of National Research Foundation funded by the Ministry of Science and ICT (MSIT), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

HC, JH, and JAC contributed to the design of this study; HC, JH, JAC, JC, and RK conducted this study; HC, JH, JAC, JC, and RK contributed to data collection, analysis, management, and interpretation; HC, JH, and JC, and JC prepared the manuscript.

Corresponding author

Correspondence to Hyun-kyung Cho.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval

This study adhered to the tenets of the Declaration of Helsinki. NHIS-NCS 2002–2013 project was approved by the Institutional Review Board (IRB) of the Korean National Health Insurance Service. This study was approved by the Institutional Review Board of Gyeongsang National University Changwon Hospital and School of Medicine. The requirement for informed consent was exempted by the IRB because this study was retrospective in nature.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, Hk., Han, J.C., Choi, J.A. et al. Association between atrial fibrillation and the risk of glaucoma development: a 12-year Nationwide cohort study. Eye 37, 2033–2041 (2023). https://doi.org/10.1038/s41433-022-02274-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41433-022-02274-1

Search

Quick links