Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clinical outcomes of presbyopia correction with the latest techniques of presbyLASIK: a systematic review


The aim of this study was to collect the scientific literature on the correction of presbyopia with laser in situ keratomileusis (presbyLASIK) in last years and to analyse the quality of such scientific evidence using a validated methodology for conducting a systematic review. A total of 42 articles were initially identified, but after applying the selection criteria and an additional manual search a total of 23 articles were finally included: 2 non-randomized controlled clinical trials (NRCT) and 21 case series. Quality assessment of NRCTs and case series was performed with the ROBINS-I and the 20-criterion quality appraisal checklist defined by Moga et al. (IHE Publ 2012), respectively. For NRCT, the risk of bias was moderate in one study and serious in the other NRCT, being the main sources of risk, the domains related to confounding, selection of participants and measurement of outcomes. For case series studies, the main source of risk of bias was subjects not entering the study at the same point of the conditions (different levels of presbyopia). Likewise, a significant level of uncertainty was detected for the following items: consecutive recruitment of patients, blinding of outcome assessors to the intervention that the patient received, and conclusions of the study not supported by the results. Research on presbyLASIK to this date is mainly focused on case series generating a limited level of scientific evidence. The two NRCTs identified only demonstrated the potential benefit of combining the multiaspheric profile with some level of monovision in the non-dominant eye.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2: Criteria used for quality assessment with the 20-criterion quality appraisal checklist defined by Moga et al. [8].
Fig. 3


  1. Balgos MD, Vargas V, Alió J. Correction of presbyopia: an integrated update for the practical surgeon. Taiwan J Ophthalmol. 2018;8:121–40.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Vargas-Fragoso V, Alió JL. Corneal compensation of presbyopia: PresbyLASIK: an updated review. Eye Vis. 2017;4:11.

    Article  Google Scholar 

  3. Shetty R, Brar S, Sharma M, Dadachanji Z, Lalgudi VG. PresbyLASIK: a review of PresbyMAX, Supracor, and laser blended vision: Principles, planning, and outcomes. Indian J Ophthalmol. 2020;68:2723–31.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alió JL, Amparo F, Ortiz D, Moreno L. Corneal multifocality with excimer laser for presbyopia correction. Curr Opin Ophthalmol. 2009;20:264–71.

    Article  PubMed  Google Scholar 

  5. Zeng X, Zhang Y, Kwong JSW, Zhang C, Li S, Sun F, et al. The methodological quality assessment tools for preclinical and clinical studies, systematic review and meta-analysis, and clinical practice guideline: a systematic review. J Evid Based Med. 2015;8:2–10.

    Article  PubMed  Google Scholar 

  6. Kelly RE. Biliary problems in infancy and childhood. Probl Gen Surg. 1999;16:101–7.

    Google Scholar 

  7. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non- randomised studies of interventions. BMJ. 2016;355:i4919.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Moga C, Guo B, Harstall C. Development of a quality appraisal tool for case series studies using a modified delphi technique. IHE Publ. 2012:1–71. Accessed 2 June 2021.

  9. Guo B, Moga C, Harstall C, Schopflocher D. A principal component analysis is conducted for a case series quality appraisal checklist. J Clin Epidemiol. 2016;69:199–207.e2.

    Article  PubMed  Google Scholar 

  10. Kohnen T, Böhm M, Herzog M, Hemkeppler E, Petermann K, Lwowski C. Near visual acuity and patient-reported outcomes in presbyopic patients after bilateral multifocal aspheric laser in situ keratomileusis excimer laser surgery. J Cataract Refract Surg. 2020;46:944–52.

    Article  PubMed  Google Scholar 

  11. Leray B, Cassagne M, Soler V, Villegas EA, Triozon C, Perez GM, et al. Relationship between induced spherical aberration and depth of focus after hyperopic LASIK in presbyopic patients. Ophthalmology. 2015;122:233–43.

    Article  PubMed  Google Scholar 

  12. Rahmania N, Salah I, Rampat R, Gatinel D. Clinical effectiveness of laser-induced increased depth of field for the simultaneous correction of hyperopia and presbyopia. J Refract Surg. 2021;37:16–24.

    Article  PubMed  Google Scholar 

  13. Boucenna W, Hagège A, Lussato M, Morfeq H, Kochbati E, Jany B, et al. PresbyPRK vs presbyLASIK using the SUPRACOR algorithm and micromonovision in presbyopic hyperopic patients: visual and refractive results at 12 months. J Cataract Refract Surg. 2021;47:878–85.

    PubMed  Google Scholar 

  14. Avila MY, Vivas PR. Visual outcomes in hyperopic myopic and emmetropic patients with customized aspheric ablation (Q factor) and micro-monovision. Int Ophthalmol. 2021;41:2179–85.

    Article  PubMed  Google Scholar 

  15. Ganesh S, Brar S, Gautam M, Sriprakash K. Visual and refractive outcomes following laser blended vision using non-linear aspheric micro-monovision. J Refract Surg. 2020;36:300–7.

    Article  PubMed  Google Scholar 

  16. Liu F, Zhang T, Liu Q. One-year results of presbyLASIK using hybrid bi-aspheric micro-monovision ablation profile in correction of presbyopia and myopic astigmatism. Int J Ophthalmol. 2020;13:271–7.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fu D, Zhao J, Zhou XT. Objective optical quality and visual outcomes after the PresbyMAX monocular ablation profile. Int J Ophthalmol. 2020;13:1060–5.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Fu D, Zhao J, Zeng L, Zhou X. One year outcome and satisfaction of presbyopia correction using the PresbyMAX® monocular ablation profile. Front Med. 2020;7:589275.

    Article  Google Scholar 

  19. Luger MHA, McAlinden C, Buckhurst PJ, Wolffsohn JS, Verma S, Arba-Mosquera S. Long-term outcomes after LASIK using a hybrid bi-aspheric micro-monovision ablation profile for presbyopia correction. J Refract Surg. 2020;36:89–96.

    Article  PubMed  Google Scholar 

  20. Villanueva A, Vargas V, Mas D, Torky M, Alió JL. Long-term corneal multifocal stability following a presbyLASIK technique analysed by a light propagation algorithm. Clin Exp Optom. 2019;102:496–500.

    Article  PubMed  Google Scholar 

  21. Pajic B, Pajic-Eggspuehler B, Mueller J, Cvejic Z, Studer H. A Novel laser refractive surgical treatment for presbyopia: optics-based customization for improved clinical outcome. Sensors. 2017;17:1367.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chan TCY, Kwok PSK, Jhanji V, Woo VCP, Ng ALK. Presbyopic correction using monocular bi-aspheric ablation profile (PresbyMAX) in hyperopic eyes: 1-year outcomes. J Refract Surg. 2017;33:37–43.

    Article  PubMed  Google Scholar 

  23. Vastardis I, Pajic-Eggspühler B, Müller J, Cvejic Z, Pajic B. Femtosecond laser-assisted in situ keratomileusis multifocal ablation profile using a mini-monovision approach for presbyopic patients with hyperopia. Clin Ophthalmol. 2016;10:1245–56.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Courtin R, Saad A, Grise-Dulac A, Guilbert E, Gatinel D. Changes to corneal aberrations and vision after monovision in patients with hyperopia after using a customized aspheric ablation profile to increase corneal asphericity (Q-factor). J Refract Surg. 2016;32:734–41.

    Article  PubMed  Google Scholar 

  25. Wang Yin GH, McAlinden C, Pieri E, Giulardi C, Holweck G, Hoffart L. Surgical treatment of presbyopia with central presbyopic keratomileusis: one-year results. J Cataract Refract Surg. 2016;42:1415–23.

    Article  PubMed  Google Scholar 

  26. Saib N, Abrieu-Lacaille M, Berguiga M, Rambaud C, Froussart-Maille F, Rigal-Sastourne JC. Central presbyLASIK for hyperopia and presbyopia using micro-monovision with the Technolas 217P platform and SUPRACOR algorithm. J Refract Surg. 2015;31:540–6.

    Article  PubMed  Google Scholar 

  27. Soler Tomás JR, Fuentes-Páez G, Burillo S. Symmetrical versus asymmetrical presbyLASIK: results after 18 months and patient satisfaction. Cornea. 2015;34:651–7.

    Article  PubMed  Google Scholar 

  28. Luger MHA, McAlinden C, Buckhurst PJ, Wolffsohn JS, Verma S, Arba Mosquera S. Presbyopic LASIK using hybrid bi-aspheric micro-monovision ablation profile for presbyopic corneal treatments. Am J Ophthalmol. 2015;160:493–505.

    Article  PubMed  Google Scholar 

  29. Gifford P, Kang P, Swarbrick H, Versace P. Changes to corneal aberrations and vision after Presbylasik refractive surgery using the MEL 80 platform. J Refract Surg. 2014;30:598–603.

    Article  PubMed  Google Scholar 

  30. Luger MH, Ewering T, Arba-Mosquera S. One-year experience in presbyopia correction with biaspheric multifocal central presbyopia laser in situ keratomileusis. Cornea. 2013;32:644–52.

    Article  PubMed  Google Scholar 

  31. Baudu P, Penin F, Arba, Mosquera S. Uncorrected binocular performance after biaspheric ablation profile for presbyopic corneal treatment using AMARIS with the PresbyMAX module. Am J Ophthalmol. 2013;155:636–47. 47.e1

    Article  PubMed  Google Scholar 

  32. Uthoff D, Pölzl M, Hepper D, Holland D. A new method of cornea modulation with excimer laser for simultaneous correction of presbyopia and ametropia. Graefes Arch Clin Exp Ophthalmol. 2012;250:1649–61.

    Article  PubMed  Google Scholar 

  33. Fernández J, Rodríguez-Vallejo M, Burguera N, Rocha-de-Lossada C, Piñero DP. Spherical aberration for expanding the depth of focus: a review for the anterior segment surgeon. J Cataract Refract Surg. 2021;47:1587–95.

    Article  PubMed  Google Scholar 

  34. Legras R, Benard Y, Lopez-Gil N. Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images. J Cataract Refract Surg. 2012;38:458–69.

    Article  PubMed  Google Scholar 

  35. Benard Y, Lopez-Gil N, Legras R. Optimizing the subjective depth-of-focus with combinations of fourth- and sixth-order spherical aberration. Vis Res. 2011;51:2471–7.

    Article  PubMed  Google Scholar 

  36. Pinelli R, Ortiz D, Simonetto A, Bacchi C, Sala E, Alió JL. Correction of presbyopia in hyperopia with a center-distance, paracentral-near technique using the Technolas 217z platform. J Refract Surg. 2008;24:494–500.

    Article  PubMed  Google Scholar 

  37. Epstein RL, Gurgos MA. Presbyopia treatment by monocular peripheral presbyLASIK. J Refract Surg. 2009;25:516–23.

    Article  PubMed  Google Scholar 

Download references


The author DPP has been supported by the Ministry of Economy, Industry and Competitiveness of Spain within the program Ramón y Cajal, RYC-2016-20471.

Author information

Authors and Affiliations


Corresponding author

Correspondence to David P. Piñero.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández, J., Molina-Martín, A., Rocha-de-Lossada, C. et al. Clinical outcomes of presbyopia correction with the latest techniques of presbyLASIK: a systematic review. Eye 37, 587–596 (2023).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links