Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Adaptive optics: principles and applications in ophthalmology

A Correction to this article was published on 07 January 2021

This article has been updated

Abstract

This is a comprehensive review of the principles and applications of adaptive optics (AO) in ophthalmology. It has been combined with flood illumination ophthalmoscopy, scanning laser ophthalmoscopy, as well as optical coherence tomography to image photoreceptors, retinal pigment epithelium (RPE), retinal ganglion cells, lamina cribrosa and the retinal vasculature. In this review, we highlight the clinical studies that have utilised AO to understand disease mechanisms. However, there are some limitations to using AO in a clinical setting including the cost of running an AO imaging service, the time needed to scan patients, the lack of normative databases and the very small size of area imaged. However, it is undoubtedly an exceptional research tool that enables visualisation of the retina at a cellular level.

摘要

本文对自适应光学 (AO) 成像系用在眼科中的应用和原理做出了全面的综述。AO已与检眼镜、扫描激光检眼镜以及光学相干光断层扫描等检查相结合, 用于感光细胞、视网膜色素上皮、视网膜神经节细胞、筛板和视网膜血管系统的成像。在这篇综述中, 我们着重介绍了利用AO探索疾病机理的临床研究。然而, 临床使用AO也存在着一些局限性, 包括AO成像操作的成本、扫描患者所需的时间、缺乏规范的数据库以及成像区域的尺寸非常小等缺点。但是, AO可以在细胞水平上将视网膜可视化, 所以它无疑是一个出色的研究工具。

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2: Adaptive optics flood illumination ophthalmoscope (AO-FIO, rtx1, Imagine Eyes) imaging of the cone photoreceptor mosaic in the right eye of a 36-year-old female healthy volunteer.
Fig. 3
Fig. 4: Imaging retinal vessels using adaptive optics flood illumination ophthalmoscopy.
Fig. 5: Adaptive optics scanning laser ophthalmoscope (AO-SLO) imaging of photoreceptors in a healthy subject and diabetic patients.
Fig. 6: Photoreceptor imaging in the left eye of a 71-year-old female patient with intermediate age-related macular degeneration.
Fig. 7
Fig. 8

Change history

  • 07 January 2021

    A Correction to this paper has been published: https://doi.org/10.1038/s41433-020-01362-4.

References

  1. 1.

    Miller DT, Williams DR, Morris GM, Liang J. Images of cone photoreceptors in the living human eye. Vis Res. 1996;36:1067–79.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Wade A, Fitzke F. A fast, robust pattern recognition asystem for low light level image registration and its application to retinal imaging. Opt Express. 1998;3:190–7.

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, et al. Optical coherence tomography. Science. 1991;254:1178–81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Babcock HW. The possibility of compensating astronomical seeing. Publ Astronomical Soc Pac. 1953;65:229–36.

    Article  Google Scholar 

  5. 5.

    Dreher AW, Bille JF, Weinreb RN. Active optical depth resolution improvement of the laser tomographic scanner. Appl Opt. 1989;28:804–8.

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Liang J, Williams DR, Miller DT. Supernormal vision and high-resolution retinal imaging through adaptive optics. J Opt Soc Am A Opt Image Sci Vis. 1997;14:2884–92.

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Roorda A. Adaptive optics ophthalmoscopy. J Refract Surg. 2000;16:S602–7.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Cooper RF, Dubis AM, Pavaskar A, Rha J, Dubra A, Carroll J. Spatial and temporal variation of rod photoreceptor reflectance in the human retina. Biomed Opt Express. 2011;2:2577–89.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Roorda A, Romero-Borja F, Donnelly Iii W, Queener H, Hebert T, Campbell M. Adaptive optics scanning laser ophthalmoscopy. Opt Express. 2002;10:405–12.

    PubMed  Article  Google Scholar 

  10. 10.

    Liang J, Grimm B, Goelz S, Bille JF. Objective measurement of wave aberrations of the human eye with the use of a Hartmann-Shack wave-front sensor. J Opt Soc Am A Opt Image Sci Vis. 1994;11:1949–57.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Ragazzoni R. Pupil plane wavefront sensing with an oscillating prism. J Mod Opt. 1996;43:289–93.

    Article  Google Scholar 

  12. 12.

    Fernández EJ, Povazay B, Hermann B, Unterhuber A, Sattmann H, Prieto PM, et al. Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator. Vis Res. 2005;45:3432–44.

    PubMed  Article  Google Scholar 

  13. 13.

    Jian Y, Zawadzki RJ, Sarunic MV. Adaptive optics optical coherence tomography for in vivo mouse retinal imaging. J Biomed Opt. 2013;18:56007.

    PubMed  Article  Google Scholar 

  14. 14.

    Jian Y, Xu J, Gradowski MA, Bonora S, Zawadzki RJ, Sarunic MV. Wavefront sensorless adaptive optics optical coherence tomography for in vivo retinal imaging in mice. Biomed Opt Express. 2014;5:547–59.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Elsner AE, Burns SA, Weiter JJ, Delori FC. Infrared imaging of sub-retinal structures in the human ocular fundus. Vis Res. 1996;36:191–205.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Lombardo M, Serrao S, Ducoli P, Lombardo G. Variations in image optical quality of the eye and the sampling limit of resolution of the cone mosaic with axial length in young adults. J Cataract Refract Surg. 2012;38:1147–55.

    PubMed  Article  Google Scholar 

  17. 17.

    Querques G, Kamami-Levy C, Georges A, Pedinielli A, Capuano V, Blanco-Garavito R, et al. Adaptive optics imaging of foveal sparing in geographic atrophy secondary to age-related macular degeneration. Retina. 2016;36:247–54.

    PubMed  Article  Google Scholar 

  18. 18.

    Meixner E, Michelson G. Measurement of retinal wall-to-lumen ratio by adaptive optics retinal camera: a clinical research. Graefes Arch Clin Exp Ophthalmol. 2015;253:1985–95.

    PubMed  Article  Google Scholar 

  19. 19.

    Tumahai P, Moureaux C, Meillat M, Debellemaniere G, Flores M, Delbosc B, et al. High-resolution imaging of photoreceptors in healthy human eyes using an adaptive optics retinal camera. Eye (Lond). 2018;32:1723–30.

    CAS  Article  Google Scholar 

  20. 20.

    Webb RH, Hughes GW, Delori FC. Confocal scanning laser ophthalmoscope. Appl Opt. 1987;26:1492–9.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Burns SA, Elsner AE, Sapoznik KA, Warner RL, Gast TJ. Adaptive optics imaging of the human retina. Prog Retin Eye Res. 2019;68:1–30.

    PubMed  Article  Google Scholar 

  22. 22.

    Dubis AM, Cooper RF, Aboshiha J, Langlo CS, Sundaram V, Liu B, et al. Genotype-dependent variability in residual cone structure in achromatopsia: toward developing metrics for assessing cone health. Invest Ophthalmol Vis Sci. 2014;55:7303–11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Liu Z, Kurokawa K, Zhang F, Lee JJ, Miller DT. Imaging and quantifying ganglion cells and other transparent neurons in the living human retina. Proc Natl Acad Sci USA. 2017;114:12803–8.

    CAS  PubMed  Article  Google Scholar 

  24. 24.

    Scoles D, Sulai YN, Dubra A. In vivo dark-field imaging of the retinal pigment epithelium cell mosaic. Biomed Opt Express. 2013;4:1710–23.

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Scoles D, Sulai YN, Langlo CS, Fishman GA, Curcio CA, Carroll J, et al. In vivo imaging of human cone photoreceptor inner segments. Invest Ophthalmol Vis Sci. 2014;55:4244–51.

    PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Fernandez E, Drexler W. Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography. Opt Express. 2005;13:8184–97.

    PubMed  Article  Google Scholar 

  27. 27.

    Zhang Y, Rha J, Jonnal R, Miller D. Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina. Opt Express. 2005;13:4792–811.

    PubMed  Article  Google Scholar 

  28. 28.

    Zawadzki RJ, Jones SM, Olivier SS, Zhao M, Bower BA, Izatt JA, et al. Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Opt Express. 2005;13:8532–46.

    PubMed  PubMed Central  Article  Google Scholar 

  29. 29.

    Dong ZM, Wollstein G, Wang B, Schuman JS. Adaptive optics optical coherence tomography in glaucoma. Prog Retin Eye Res. 2017;57:76–88.

    PubMed  Article  Google Scholar 

  30. 30.

    Curcio CA, Sloan KR, Kalina RE, Hendrickson AE. Human photoreceptor topography. J Comp Neurol. 1990;292:497–523.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Li KY, Roorda A. Automated identification of cone photoreceptors in adaptive optics retinal images. J Opt Soc Am A Opt Image Sci Vis. 2007;24:1358–63.

    PubMed  Article  Google Scholar 

  32. 32.

    Bergeles C, Dubis AM, Davidson B, Kasilian M, Kalitzeos A, Carroll J, et al. Unsupervised identification of cone photoreceptors in non-confocal adaptive optics scanning light ophthalmoscope images. Biomed Opt Express. 2017;8:3081–94.

    PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Litts KM, Cooper RF, Duncan JL, Carroll J. Photoreceptor-based biomarkers in AOSLO retinal imaging. Invest Ophthalmol Vis Sci. 2017;58:BIO255–67.

    PubMed  PubMed Central  Article  Google Scholar 

  34. 34.

    Garrioch R, Langlo C, Dubis AM, Cooper RF, Dubra A, Carroll J. Repeatability of in vivo parafoveal cone density and spacing measurements. Optom Vis Sci. 2012;89:632–43.

    PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Cooper RF, Wilk MA, Tarima S, Carroll J. Evaluating descriptive metrics of the human cone mosaic. Invest Ophthalmol Vis Sci. 2016;57:2992–3001.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Cooper RF, Lombardo M, Carroll J, Sloan KR, Lombardo G. Methods for investigating the local spatial anisotropy and the preferred orientation of cones in adaptive optics retinal images. Vis Neurosci. 2016;33:E005.

    PubMed  PubMed Central  Article  Google Scholar 

  37. 37.

    Liu J, Jung H, Dubra A, Tam J. Cone photoreceptor cell segmentation and diameter measurement on adaptive optics images using circularly constrained active contour model. Invest Ophthalmol Vis Sci. 2018;59:4639–52.

    PubMed  PubMed Central  Article  Google Scholar 

  38. 38.

    Jonnal RS, Kocaoglu OP, Wang Q, Lee S, Miller DT. Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics. Biomed Opt Express. 2012;3:104–24.

    PubMed  Article  Google Scholar 

  39. 39.

    Pallikaris A, Williams DR, Hofer H. The reflectance of single cones in the living human eye. Invest Ophthalmol Vis Sci. 2003;44:4580–92.

    PubMed  Article  Google Scholar 

  40. 40.

    Duncan JL, Roorda A. Dysflective cones. Adv Exp Med Biol. 2019;1185:133–7.

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Bruce KS, Harmening WM, Langston BR, Tuten WS, Roorda A, Sincich LC. Normal perceptual sensitivity arising from weakly reflective cone photoreceptors. Invest Ophthalmol Vis Sci. 2015;56:4431–8.

    PubMed  PubMed Central  Article  Google Scholar 

  42. 42.

    Morgan JI, Dubra A, Wolfe R, Merigan WH, Williams DR. In vivo autofluorescence imaging of the human and macaque retinal pigment epithelial cell mosaic. Invest Ophthalmol Vis Sci. 2009;50:1350–9.

    PubMed  Article  Google Scholar 

  43. 43.

    Roorda A, Zhang Y, Duncan JL. High-resolution in vivo imaging of the RPE mosaic in eyes with retinal disease. Invest Ophthalmol Vis Sci. 2007;48:2297–303.

    PubMed  Article  Google Scholar 

  44. 44.

    Liu T, Jung H, Liu J, Droettboom M, Tam J. Noninvasive near infrared autofluorescence imaging of retinal pigment epithelial cells in the human retina using adaptive optics. Biomed Opt Express. 2017;8:4348–60.

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Granger CE, Yang Q, Song H, Saito K, Nozato K, Latchney LR, et al. Human retinal pigment epithelium: in vivo cell morphometry, multispectral autofluorescence, and relationship to cone mosaic. Invest Ophthalmol Vis Sci. 2018;59:5705–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. 46.

    Liu Z, Kurokawa K, Hammer DX, Miller DT. In vivo measurement of organelle motility in human retinal pigment epithelial cells. Biomed Opt Express. 2019;10:4142–58.

    PubMed  PubMed Central  Article  Google Scholar 

  47. 47.

    Rossi EA, Granger CE, Sharma R, Yang Q, Saito K, Schwarz C, et al. Imaging individual neurons in the retinal ganglion cell layer of the living eye. Proc Natl Acad Sci USA. 2017;114:586–91.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Ivers KM, Li C, Patel N, Sredar N, Luo X, Queener H, et al. Reproducibility of measuring lamina cribrosa pore geometry in human and nonhuman primates with in vivo adaptive optics imaging. Invest Ophthalmol Vis Sci. 2011;52:5473–80.

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Bennett AG, Rudnicka AR, Edgar DF. Improvements on Littmann’s method of determining the size of retinal features by fundus photography. Graefes Arch Clin Exp Ophthalmol. 1994;232:361–7.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Nadler Z, Wang B, Schuman JS, Ferguson RD, Patel A, Hammer DX, et al. In vivo three-dimensional characterization of the healthy human lamina cribrosa with adaptive optics spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2014;55:6459–66.

    PubMed  PubMed Central  Article  Google Scholar 

  51. 51.

    Bedggood P, Metha A. Adaptive optics imaging of the retinal microvasculature. Clin Exp Optom. 2020;103:112–22.

    PubMed  Article  Google Scholar 

  52. 52.

    Chui TY, Gast TJ, Burns SA. Imaging of vascular wall fine structure in the human retina using adaptive optics scanning laser ophthalmoscopy. Invest Ophthalmol Vis Sci. 2013;54:7115–24.

    PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Burns SA, Elsner AE, Chui TY, Vannasdale DA Jr., Clark CA, Gast TJ, et al. In vivo adaptive optics microvascular imaging in diabetic patients without clinically severe diabetic retinopathy. Biomed Opt Express. 2014;5:961–74.

    PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Hillard JG, Gast TJ, Chui TY, Sapir D, Burns SA. Retinal arterioles in hypo-, normo-, and hypertensive subjects measured using adaptive optics. Transl Vis Sci Technol. 2016;5:16.

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Luo T, Gast TJ, Vermeer TJ, Burns SA. Retinal vascular branching in healthy and diabetic subjects. Invest Ophthalmol Vis Sci. 2017;58:2685–94.

    PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Tam J, Martin JA, Roorda A. Noninvasive visualization and analysis of parafoveal capillaries in humans. Invest Ophthalmol Vis Sci. 2010;51:1691–8.

    PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Chui TYP, Mo S, Krawitz B, Menon NR, Choudhury N, Gan A, et al. Human retinal microvascular imaging using adaptive optics scanning light ophthalmoscopy. Int J Retin Vitreous. 2016;2:11.

    Article  Google Scholar 

  58. 58.

    Tam J, Dhamdhere KP, Tiruveedhula P, Manzanera S, Barez S, Bearse MA Jr., et al. Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. Invest Ophthalmol Vis Sci. 2011;52:9257–66.

    PubMed  PubMed Central  Article  Google Scholar 

  59. 59.

    Tsujikawa A, Ogura Y. Evaluation of leukocyte-endothelial interactions in retinal diseases. Ophthalmologica. 2012;227:68–79.

    PubMed  Article  Google Scholar 

  60. 60.

    Martin JA, Roorda A. Direct and noninvasive assessment of parafoveal capillary leukocyte velocity. Ophthalmology. 2005;112:2219–24.

    PubMed  Article  Google Scholar 

  61. 61.

    Lu Y, Bernabeu MO, Lammer J, Cai CC, Jones ML, Franco CA, et al. Computational fluid dynamics assisted characterization of parafoveal hemodynamics in normal and diabetic eyes using adaptive optics scanning laser ophthalmoscopy. Biomed Opt Express. 2016;7:4958–73.

    PubMed  PubMed Central  Article  Google Scholar 

  62. 62.

    Martin JA, Roorda A. Pulsatility of parafoveal capillary leukocytes. Exp Eye Res. 2009;88:356–60.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Tam J, Tiruveedhula P, Roorda A. Characterization of single-file flow through human retinal parafoveal capillaries using an adaptive optics scanning laser ophthalmoscope. Biomed Opt Express. 2011;2:781–93.

    PubMed  PubMed Central  Article  Google Scholar 

  64. 64.

    Zhong Z, Petrig BL, Qi X, Burns SA. In vivo measurement of erythrocyte velocity and retinal blood flow using adaptive optics scanning laser ophthalmoscopy. Opt Express. 2008;16:12746–56.

    PubMed  PubMed Central  Article  Google Scholar 

  65. 65.

    Zhong Z, Song H, Chui TY, Petrig BL, Burns SA. Noninvasive measurements and analysis of blood velocity profiles in human retinal vessels. Invest Ophthalmol Vis Sci. 2011;52:4151–7.

    PubMed  PubMed Central  Article  Google Scholar 

  66. 66.

    Palochak CMA, Lee HE, Song J, Geng A, Linsenmeier RA, Burns SA, et al. Retinal Blood Velocity and Flow in Early Diabetes and Diabetic Retinopathy Using Adaptive Optics Scanning Laser Ophthalmoscopy. J Clin Med. 2019;8:8.

    Article  CAS  Google Scholar 

  67. 67.

    Harmening WM, Sincich LC. Adaptive optics for photoreceptor-targeted psychophysics. In: Bille JF, editor. High resolution imaging in microscopy and ophthalmology: new frontiers in biomedical optics. Cham (CH); 2019. pp. 359–75.

  68. 68.

    Hofer H, Carroll J, Neitz J, Neitz M, Williams DR. Organization of the human trichromatic cone mosaic. J Neurosci. 2005;25:9669–79.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Grieve K, Roorda A. Intrinsic signals from human cone photoreceptors. Invest Ophthalmol Vis Sci. 2008;49:713–9.

    PubMed  Article  Google Scholar 

  70. 70.

    Hillmann D, Spahr H, Pfaffle C, Sudkamp H, Franke G, Huttmann G. In vivo optical imaging of physiological responses to photostimulation in human photoreceptors. Proc Natl Acad Sci USA. 2016;113:13138–43.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Litts KM, Wang X, Clark ME, Owsley C, Freund KB, Curcio CA, et al. Exploring photoreceptor reflectivity through multimodal imaging of outer retinal tubulation in advanced age-related macular degeneration. Retina. 2017;37:978–88.

    PubMed  PubMed Central  Article  Google Scholar 

  72. 72.

    Panorgias A, Zawadzki RJ, Capps AG, Hunter AA, Morse LS, Werner JS. Multimodal assessment of microscopic morphology and retinal function in patients with geographic atrophy. Invest Ophthalmol Vis Sci. 2013;54:4372–84.

    PubMed  PubMed Central  Article  Google Scholar 

  73. 73.

    Wang Q, Tuten WS, Lujan BJ, Holland J, Bernstein PS, Schwartz SD, et al. Adaptive optics microperimetry and OCT images show preserved function and recovery of cone visibility in macular telangiectasia type 2 retinal lesions. Invest Ophthalmol Vis Sci. 2015;56:778–86.

    PubMed  PubMed Central  Article  Google Scholar 

  74. 74.

    Kocaoglu OP, Liu Z, Zhang F, Kurokawa K, Jonnal RS, Miller DT. Photoreceptor disc shedding in the living human eye. Biomed Opt Express. 2016;7:4554–68.

    PubMed  PubMed Central  Article  Google Scholar 

  75. 75.

    Sabesan R, Schmidt BP, Tuten WS, Roorda A. The elementary representation of spatial and color vision in the human retina. Sci Adv. 2016;2:e1600797.

    PubMed  PubMed Central  Article  Google Scholar 

  76. 76.

    Yang Q, Arathorn DW, Tiruveedhula P, Vogel CR, Roorda A. Design of an integrated hardware interface for AOSLO image capture and cone-targeted stimulus delivery. Opt Express. 2010;18:17841–58.

    PubMed  PubMed Central  Article  Google Scholar 

  77. 77.

    Tuten WS, Harmening WM, Sabesan R, Roorda A, Sincich LC. Spatiochromatic Interactions between Individual Cone Photoreceptors in the Human Retina. J Neurosci. 2017;37:9498–509.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Duan A, Bedggood PA, Bui BV, Metha AB. Evidence of flicker-induced functional hyperaemia in the smallest vessels of the human retinal blood supply. PLoS ONE. 2016;11:e0162621.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79.

    Newman EA. Functional hyperemia and mechanisms of neurovascular coupling in the retinal vasculature. J Cereb Blood Flow Metab. 2013;33:1685–95.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. 80.

    Duan A, Bedggood PA, Metha AB, Bui BV. Reactivity in the human retinal microvasculature measured during acute gas breathing provocations. Sci Rep. 2017;7:2113.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81.

    Hagag AM, Pechauer AD, Liu L, Wang J, Zhang M, Jia Y, et al. OCT angiography changes in the 3 parafoveal retinal plexuses in response to hyperoxia. Ophthalmol Retina. 2018;2:329–36.

    PubMed  Article  Google Scholar 

  82. 82.

    Song H, Chui TY, Zhong Z, Elsner AE, Burns SA. Variation of cone photoreceptor packing density with retinal eccentricity and age. Invest Ophthalmol Vis Sci. 2011;52:7376–84.

    PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Park SP, Chung JK, Greenstein V, Tsang SH, Chang S. A study of factors affecting the human cone photoreceptor density measured by adaptive optics scanning laser ophthalmoscope. Exp Eye Res. 2013;108:1–9.

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Zaleska-Zmijewska A, Wawrzyniak ZM, Ulinska M, Szaflik J, Dabrowska A, Szaflik JP. Human photoreceptor cone density measured with adaptive optics technology (rtx1 device) in healthy eyes: standardization of measurements. Med (Baltim). 2017;96:e7300.

    Article  Google Scholar 

  85. 85.

    Lombardo M, Parravano M, Lombardo G, Varano M, Boccassini B, Stirpe M, et al. Adaptive optics imaging of parafoveal cones in type 1 diabetes. Retina. 2014;34:546–57.

    PubMed  Article  Google Scholar 

  86. 86.

    Tam J, Dhamdhere KP, Tiruveedhula P, Manzanera S, Barez S, Bearse MA Jr., et al. Disruption of the retinal parafoveal capillary network in type 2 diabetes before the onset of diabetic retinopathy. Investigative Ophthalmol Vis Sci. 2011;52:9257–66.

    Article  Google Scholar 

  87. 87.

    Sun JK, Prager S, Radwan S, Ramsey DJ, Silva PS, Kwak H, et al. Photoreceptor mosaic changes in diabetic eye disease assessed by adaptive optics scanning laser ophthalmoscopy (AOSLO). Investigative Ophthalmol Vis Sci. 2012;53:4647.

    Google Scholar 

  88. 88.

    Tan W, Wright T, Rajendran D, Garcia-Sanchez Y, Finkelberg L, Kisilak M, et al. Cone-photoreceptor density in adolescents with type 1 diabetes. Invest Ophthalmol Vis Sci. 2015;56:6339–43.

    PubMed  Article  Google Scholar 

  89. 89.

    Lombardo M, Parravano M, Serrao S, Ducoli P, Stirpe M, Lombardo G. Analysis of retinal capillaries in patients with type 1 diabetes and nonproliferative diabetic retinopathy using adaptive optics imaging. Retina. 2013;33:1630–9.

    PubMed  Article  Google Scholar 

  90. 90.

    Chui TY, Dubow M, Pinhas A, Shah N, Gan A, Weitz R, et al. Comparison of adaptive optics scanning light ophthalmoscopic fluorescein angiography and offset pinhole imaging. Biomed Opt Express. 2014;5:1173–89.

    PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Meirelles ALB, Rodrigues MW, Guirado AF, Jorge R. Photoreceptor assessment using adaptive optics in resolved central serous chorioretinopathy. Arq Bras Oftalmol. 2017;80:192–5.

    PubMed  Article  Google Scholar 

  92. 92.

    Ooto S, Hangai M, Sakamoto A, Tsujikawa A, Yamashiro K, Ojima Y, et al. High-resolution imaging of resolved central serous chorioretinopathy using adaptive optics scanning laser ophthalmoscopy. Ophthalmology. 2010;117:1800–9.e2.

    PubMed  Article  Google Scholar 

  93. 93.

    Nakamura T, Ueda-Consolvo T, Oiwake T, Hayashi A. Correlation between outer retinal layer thickness and cone density in patients with resolved central serous chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2016;254:2347–54.

    PubMed  Article  Google Scholar 

  94. 94.

    Querques G, Massamba N, Guigui B, Lea Q, Lamory B, Soubrane G, et al. In vivo evaluation of photoreceptor mosaic in early onset large colloid drusen using adaptive optics. Acta Ophthalmol. 2012;90:e327–8.

    PubMed  Article  Google Scholar 

  95. 95.

    Gocho K, Sarda V, Falah S, Sahel J-A, Sennlaub F, Benchaboune M, et al. Adaptive optics imaging of geographic atrophy. Investigative Ophthalmol Vis Sci. 2013;54:3673–80.

    Article  Google Scholar 

  96. 96.

    Boretsky A, Khan F, Burnett G, Hammer DX, Ferguson RD, van Kuijk F, et al. In vivo imaging of photoreceptor disruption associated with age-related macular degeneration: a pilot study. Lasers Surg Med. 2012;44:603–10.

    PubMed  PubMed Central  Article  Google Scholar 

  97. 97.

    Johnson PT, Lewis GP, Talaga KC, Brown MN, Kappel PJ, Fisher SK, et al. Drusen-associated degeneration in the retina. Invest Ophthalmol Vis Sci. 2003;44:4481–8.

    PubMed  Article  Google Scholar 

  98. 98.

    Godara P, Siebe C, Rha J, Michaelides M, Carroll J. Assessing the photoreceptor mosaic over drusen using adaptive optics and SD-OCT. Ophthalmic Surg Lasers Imaging. 2010;41:S104–8.

    PubMed  PubMed Central  Article  Google Scholar 

  99. 99.

    Takagi S, Mandai M, Gocho K, Hirami Y, Yamamoto M, Fujihara M, et al. Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration. Ophthalmol Retina. 2019;3:850–9.

    PubMed  Article  Google Scholar 

  100. 100.

    Zwillinger S, Paques M, Safran B, Baudouin C. In vivo characterization of lamina cribrosa pore morphology in primary open-angle glaucoma. J Fr Ophtalmol. 2016;39:265–71.

    CAS  PubMed  Article  Google Scholar 

  101. 101.

    Hasegawa T, Ooto S, Takayama K, Makiyama Y, Akagi T, Ikeda HO, et al. Cone integrity in glaucoma: an adaptive-optics scanning laser ophthalmoscopy study. Am J Ophthalmol. 2016;171:53–66.

    PubMed  Article  Google Scholar 

  102. 102.

    Chen MF, Chui TYP, Alhadeff P, Rosen RB, Ritch R, Dubra A, et al. Adaptive optics imaging of healthy and abnormal regions of retinal nerve fiber bundles of patients with glaucoma. Investigative Ophthalmol Vis Sci. 2015;56:674–81.

    Article  Google Scholar 

  103. 103.

    King BJ, Sapoznik KA, Elsner AE, Gast TJ, Papay JA, Clark CA, et al. SD-OCT and adaptive optics imaging of outer retinal tubulation. Optom Vis Sci. 2017;94:411–22.

    PubMed  Article  Google Scholar 

  104. 104.

    Talcott KE, Ratnam K, Sundquist SM, Lucero AS, Lujan BJ, Tao W, et al. Longitudinal study of cone photoreceptors during retinal degeneration and in response to ciliary neurotrophic factor treatment. Invest Ophthalmol Vis Sci. 2011;52:2219–26.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Loo J, Clemons TE, Chew EY, Friedlander M, Jaffe GJ, Farsiu S. Beyond performance metrics: automatic deep learning retinal OCT analysis reproduces clinical trial outcome. Ophthalmology. 2020;127:793–801.

    PubMed  Article  Google Scholar 

  106. 106.

    da Cruz L, Fynes K, Georgiadis O, Kerby J, Luo YH, Ahmado A, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration. Nat Biotechnol. 2018;36:328–37.

    PubMed  Article  CAS  Google Scholar 

  107. 107.

    Sharma R, Williams DR, Palczewska G, Palczewski K, Hunter JJ. Two-photon autofluorescence imaging reveals cellular structures throughout the retina of the living primate eye. Invest Ophthalmol Vis Sci. 2016;57:632–46.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. 108.

    Morgan JI, Hunter JJ, Masella B, Wolfe R, Gray DC, Merigan WH, et al. Light-induced retinal changes observed with high-resolution autofluorescence imaging of the retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2008;49:3715–29.

    PubMed  PubMed Central  Article  Google Scholar 

  109. 109.

    Sincich LC, Zhang Y, Tiruveedhula P, Horton JC, Roorda A. Resolving single cone inputs to visual receptive fields. Nat Neurosci. 2009;12:967–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Sharma R, Schwarz C, Williams DR, Palczewska G, Palczewski K, Hunter JJ. In vivo two-photon fluorescence kinetics of primate rods and cones. Invest Ophthalmol Vis Sci. 2016;57:647–57.

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Yin L, Masella B, Dalkara D, Zhang J, Flannery JG, Schaffer DV, et al. Imaging light responses of foveal ganglion cells in the living macaque eye. J Neurosci. 2014;34:6596–605.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. 112.

    Sajdak BS, Salmon AE, Cava JA, Allen KP, Freling S, Ramamirtham R, et al. Noninvasive imaging of the tree shrew eye: Wavefront analysis and retinal imaging with correlative histology. Exp Eye Res. 2019;185:107683.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  113. 113.

    de la Cera EG, Rodriguez G, Llorente L, Schaeffel F, Marcos S. Optical aberrations in the mouse eye. Vis Res. 2006;46:2546–53.

    PubMed  Article  Google Scholar 

  114. 114.

    Biss DP, Sumorok D, Burns SA, Webb RH, Zhou Y, Bifano TG, et al. In vivo fluorescent imaging of the mouse retina using adaptive optics. Opt Lett. 2007;32:659–61.

    PubMed  PubMed Central  Article  Google Scholar 

  115. 115.

    Geng Y, Dubra A, Yin L, Merigan WH, Sharma R, Libby RT, et al. Adaptive optics retinal imaging in the living mouse eye. Biomed Opt Express. 2012;3:715–34.

    PubMed  PubMed Central  Article  Google Scholar 

  116. 116.

    Geng Y, Greenberg KP, Wolfe R, Gray DC, Hunter JJ, Dubra A, et al. In vivo imaging of microscopic structures in the rat retina. Invest Ophthalmol Vis Sci. 2009;50:5872–9.

    PubMed  PubMed Central  Article  Google Scholar 

  117. 117.

    Yin L, Geng Y, Osakada F, Sharma R, Cetin AH, Callaway EM, et al. Imaging light responses of retinal ganglion cells in the living mouse eye. J Neurophysiol. 2013;109:2415–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  118. 118.

    Palczewska G, Dong Z, Golczak M, Hunter JJ, Williams DR, Alexander NS, et al. Noninvasive two-photon microscopy imaging of mouse retina and retinal pigment epithelium through the pupil of the eye. Nat Med. 2014;20:785–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  119. 119.

    Hammer DX, Ferguson RD, Mujat M, Patel A, Plumb E, Iftimia N, et al. Multimodal adaptive optics retinal imager: design and performance. J Opt Soc Am A Opt Image Sci Vis. 2012;29:2598–607.

    PubMed  PubMed Central  Article  Google Scholar 

  120. 120.

    Wahl DJ, Zhang P, Mocci J, Quintavalla M, Muradore R, Jian Y, et al. Adaptive optics in the mouse eye: wavefront sensing based vs. image-guided aberration correction. Biomed Opt Express. 2019;10:4757–74.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  121. 121.

    Joseph A, Guevara-Torres A, Schallek J. Imaging single-cell blood flow in the smallest to largest vessels in the living retina. Elife. 2019;8:1–36.

    Google Scholar 

  122. 122.

    Schallek J, Geng Y, Nguyen H, Williams DR. Morphology and topography of retinal pericytes in the living mouse retina using in vivo adaptive optics imaging and ex vivo characterization. Invest Ophthalmol Vis Sci. 2013;54:8237–50.

    PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Deng WT, Li J, Zhu P, Chiodo VA, Smith WC, Freedman B, et al. Human L- and M-opsins restore M-cone function in a mouse model for human blue cone monochromacy. Mol Vis. 2018;24:17–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. 124.

    Cheong SK, Strazzeri JM, Williams DR, Merigan WH. All-optical recording and stimulation of retinal neurons in vivo in retinal degeneration mice. PLoS ONE. 2018;13:e0194947.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  125. 125.

    Miller EB, Zhang P, Ching K, Pugh EN Jr., Burns ME. In vivo imaging reveals transient microglia recruitment and functional recovery of photoreceptor signaling after injury. Proc Natl Acad Sci USA. 2019;116:16603–12.

    CAS  PubMed  Article  Google Scholar 

  126. 126.

    Debarre D, Botcherby EJ, Watanabe T, Srinivas S, Booth MJ, Wilson T. Image-based adaptive optics for two-photon microscopy. Opt Lett. 2009;34:2495–7.

    PubMed  PubMed Central  Article  Google Scholar 

  127. 127.

    Jesacher A, Thayil A, Grieve K, Debarre D, Watanabe T, Wilson T, et al. Adaptive harmonic generation microscopy of mammalian embryos. Opt Lett. 2009;34:3154–6.

    PubMed  PubMed Central  Article  Google Scholar 

  128. 128.

    Leroux CE, Grichine A, Wang I, Delon A. Correction of cell-induced optical aberrations in a fluorescence fluctuation microscope. Opt Lett. 2013;38:2401–3.

    PubMed  PubMed Central  Article  Google Scholar 

  129. 129.

    Liu YZ, Shemonski ND, Adie SG, Ahmad A, Bower AJ, Carney PS, et al. Computed optical interferometric tomography for high-speed volumetric cellular imaging. Biomed Opt Express. 2014;5:2988–3000.

    PubMed  PubMed Central  Article  Google Scholar 

  130. 130.

    Wells-Gray EM ZR, Finn SC, Greiner C, Werner JS, Choi SS, et al. Performance of a combined optical coherence tomography and scanning laser ophthalmoscope with adaptive optics for human retinal imaging applications. In: Progress in Biomedical Optics and Imaging - Proceedings of SPIE. Proceedings of SPIE. 2015;9335.

  131. 131.

    Cunefare D, Huckenpahler AL, Patterson EJ, Dubra A, Carroll J, Farsiu S. RAC-CNN: multimodal deep learning based automatic detection and classification of rod and cone photoreceptors in adaptive optics scanning light ophthalmoscope images. Biomed Opt Express. 2019;10:3815–32.

    PubMed  PubMed Central  Article  Google Scholar 

  132. 132.

    Ju MJ, Heisler M, Wahl D, Jian Y, Sarunic MV. Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging. J Biomed Opt. 2017;22:1–10.

    PubMed  Article  Google Scholar 

  133. 133.

    Jian Y, Lee S, Ju MJ, Heisler M, Ding W, Zawadzki RJ, et al. Lens-based wavefront sensorless adaptive optics swept source OCT. Sci Rep. 2016;6:27620.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. 134.

    Yang Q, Zhang J, Nozato K, Saito K, Williams DR, Roorda A, et al. Closed-loop optical stabilization and digital image registration in adaptive optics scanning light ophthalmoscopy. Biomed Opt Express. 2014;5:3174–91.

    PubMed  PubMed Central  Article  Google Scholar 

  135. 135.

    Park JH, Kong L, Zhou Y, Cui M. Large-field-of-view imaging by multi-pupil adaptive optics. Nat Methods. 2017;14:581–3.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  136. 136.

    Zhao Q, Shi X, Zhu X, Zheng Y, Wu C, Tang H, et al. Large field of view correction by using conjugate adaptive optics with multiple guide stars. J Biophotonics. 2019;12:e201800225.

    PubMed  Article  Google Scholar 

  137. 137.

    Camino A, Ng R, Huang J, Guo Y, Ni S, Jia Y, et al. Depth-resolved optimization of a real-time sensorless adaptive optics optical coherence tomography. Opt Lett. 2020;45:2612–5.

    PubMed  Article  Google Scholar 

  138. 138.

    Marcos S, Werner JS, Burns SA, Merigan WH, Artal P, Atchison DA, et al. Vision science and adaptive optics, the state of the field. Vis Res. 2017;132:3–33.

    PubMed  Article  Google Scholar 

  139. 139.

    Camino A, Pengxiao Z, Athwal A, Ni S, Jia Y, Huang D, et al. Sensorless adaptive-optics optical coherence tomographic angiography. Biomed Opt Express. 2020;11:3952–67.

    PubMed  PubMed Central  Article  Google Scholar 

  140. 140.

    Jung H, Liu J, Liu T, George A, Smelkinson MG, Cohen S, et al. Longitudinal adaptive optics fluorescence microscopy reveals cellular mosaicism in patients. JCI Insight. 2019;4:1–17.

    Article  Google Scholar 

  141. 141.

    Song H, Rossi EA, Latchney L, Bessette A, Stone E, Hunter JJ, et al. Cone and rod loss in Stargardt disease revealed by adaptive optics scanning light ophthalmoscopy. JAMA Ophthalmol. 2015;133:1198–203.

    PubMed  PubMed Central  Article  Google Scholar 

  142. 142.

    Nakatake S, Murakami Y, Funatsu J, Koyanagi Y, Akiyama M, Momozawa Y, et al. Early detection of cone photoreceptor cell loss in retinitis pigmentosa using adaptive optics scanning laser ophthalmoscopy. Graefes Arch Clin Exp Ophthalmol. 2019;257:1169–81.

    CAS  PubMed  Article  Google Scholar 

  143. 143.

    Song H, Rossi EA, Stone E, Latchney L, Williams D, Dubra A, et al. Phenotypic diversity in autosomal-dominant cone-rod dystrophy elucidated by adaptive optics retinal imaging. Br J Ophthalmol. 2018;102:136–41.

    PubMed  Article  Google Scholar 

  144. 144.

    Nakanishi A, Ueno S, Hayashi T, Katagiri S, Ito Y, Kominami T, et al. Changes of cone photoreceptor mosaic in autosomal recessive bestrophinopathy. Retina 2020;40:181–6.

    PubMed  Article  Google Scholar 

  145. 145.

    Battu R, Akkali MC, Bhanushali D, Srinivasan P, Shetty R, Berendschot TT, et al. Adaptive optics imaging of the outer retinal tubules in Bietti’s crystalline dystrophy. Eye (Lond). 2016;30:705–12.

    CAS  Article  Google Scholar 

  146. 146.

    Gocho K, Akeo K, Itoh N, Kameya S, Hayashi T, Katagiri S, et al. High-resolution adaptive optics retinal image analysis at early stage central areolar choroidal dystrophy with prph2 mutation. ophthalmic surg lasers imaging. Retina. 2016;47:1115–26.

    Google Scholar 

  147. 147.

    Ra E, Ito Y, Kawano K, Iwase T, Kaneko H, Ueno S, et al. Regeneration of photoreceptor outer segments after scleral buckling surgery for rhegmatogenous retinal detachment. Am J Ophthalmol. 2017;177:17–26.

    PubMed  Article  Google Scholar 

  148. 148.

    Yokota S, Ooto S, Hangai M, Takayama K, Ueda-Arakawa N, Yoshihara Y, et al. Objective assessment of foveal cone loss ratio in surgically closed macular holes using adaptive optics scanning laser ophthalmoscopy. PLoS ONE. 2013;8:e63786.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  149. 149.

    Debellemaniere G, Flores M, Tumahai P, Meillat M, Bidaut Garnier M, Delbosc B, et al. Assessment of parafoveal cone density in patients taking hydroxychloroquine in the absence of clinically documented retinal toxicity. Acta Ophthalmol. 2015;93:e534–40.

    CAS  PubMed  Article  Google Scholar 

  150. 150.

    Agarwal A, Soliman MK, Hanout M, Sadiq MA, Sarwar S, Jack LS, et al. Adaptive optics imaging of retinal photoreceptors overlying lesions in white dot syndrome and its functional correlation. Am J Ophthalmol. 2015;160:806–16.e2.

    PubMed  Article  Google Scholar 

  151. 151.

    Nakamura T, Hayashi A, Oiwake T. Recovery of macular cone photoreceptors in Vogt-Koyanagi-Harada disease. Graefes Arch Clin Exp Ophthalmol. 2018;256:387–94.

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Lammer J, Prager SG, Cheney MC, Ahmed A, Radwan SH, Burns SA, et al. Cone photoreceptor irregularity on adaptive optics scanning laser ophthalmoscopy correlates with severity of diabetic retinopathy and macular edema. Invest Ophthalmol Vis Sci. 2016;57:6624–32.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  153. 153.

    Razeen MM, Cooper RF, Langlo CS, Goldberg MR, Wilk MA, Han DP, et al. Correlating photoreceptor mosaic structure to clinical findings in stargardt disease. Transl Vis Sci Technol. 2016;5:6.

    PubMed  PubMed Central  Article  Google Scholar 

  154. 154.

    Lin R, Shen M, Pan D, Xu SZ, Shen RJ, Shao Y, et al. Relationship between cone loss and microvasculature change in retinitis pigmentosa. Invest Ophthalmol Vis Sci. 2019;60:4520–31.

    CAS  PubMed  Article  Google Scholar 

Download references

Funding

This research was funded by Wellcome Trust grant number 210572/Z/18/Z, an NIHR senior investigator award to AL and the National Institute for Health Research (NIHR) Biomedical Research Centre based at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Lotery.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Akyol, E., Hagag, A.M., Sivaprasad, S. et al. Adaptive optics: principles and applications in ophthalmology. Eye 35, 244–264 (2021). https://doi.org/10.1038/s41433-020-01286-z

Download citation

Search

Quick links